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Abstract

We consider a manufacturer who manages the end-of-life phase and takes one of the three ac-

tions at each period: (1) place an order, (2) use existing inventory, (3) stop holding inventory

and use an outside/alternative source. Two examples of this source are discounts for a new gen-

eration product and delegating operations. Demand is described by a non-homogeneous Poisson

process, and the decision to stop holding inventory is described by a stopping time. After formu-

lating this problem as an optimal stopping problem with additional decisions and presenting its

dynamic programming algorithm, we use martingale theory to facilitate the calculation of the

value function. Moreover, we show analytical results to understand the additional difficulties of

the problem solved, as well as structural results on optimal stopping times. Furthermore, we

devise an expandable taxonomy and categorize the models in the literature. Analytical insights

from the models as well as an extensive numerical analysis show the value of our approach. The

results indicate that the loss can be high in case the manufacturer does not exploit flexibility in

placing orders or use an outside source. Several managerial insights are obtained through nu-

merical analysis as well as structural results to facilitate decision-making during the end-of-life

horizon.
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1 Introduction and Literature Review

1.1 Motivation and Literature Review

While rapid technological developments have been shortening the life-cycle of products sold

in the market, competition and customer satisfaction have made the firms increase the warranty

periods of those products. To fix a product in case of failures, a firm holds spare parts inventory

for long periods and even after the product is no longer produced. This leads to a challenging

problem of inventory management of spare parts in the end-of-life phase – a time frame within

the product’s life-cycle that begins when the product is no longer produced and that ends at the

expiration date of all customers’ warranties (Fortuin 1980). Original equipment manufacturers

strive to properly manage the inventory in the end-of-life phase since spare parts are held for long

periods although the demand for them can be quite low. For instance, in electronics industry, a

manufacturer may need to keep spare parts for 4-30 years after the product is discontinued from

production (Teunter and Haneveld 2002). It might seem tempting to pile up abundant inventory to

obey customer warranties; however, this may result in excessive holding and scrapping costs given

that the demand is expected to be low. Indeed, HP suffered from huge obsolescence costs due to

end-of-life write-offs (Callioni et al. 2005), and in general, after-sales services can be a significant

source of profit for the firms (Shi 2019). As a result, several strategies have been developed to

control inventory and mitigate the risk of over- and under-stocking of spare parts in the end-of-life

phase.

Early approaches for inventory control in the end-of-life phase attempt to use classical inventory

models while aiming to calibrate the parameters pertinent to this phase. For instance, Silver et al.

(2016, p. 363, Subsection 8.5.1) review the studies that develop extensions of the economic order

quantity (EOQ) model while assuming a deterministic and decreasing demand rate. Those studies

find the number of replenishments to make as well as the timing and sizes of these replenishments.

Simultaneously, several studies are motivated by the intermittent demand structure in this phase,

devising inventory models with stochastic demand. Extensions of the newsvendor model, for ex-

ample, are developed where the parameters (e.g., mean and standard deviation of demand) are

estimated from available data. Such studies are reviewed by Silver et al. (2016, p. 364, Subsection

8.5.2) as well.
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The practically oriented approaches often assume that the original equipment manufacturer

can place a single order at the beginning of the end-of-life phase, and they propose complemen-

tary business strategies. The motivation behind the single-order assumption is that a component

manufacturer might decide to stop producing certain spare parts, thereby requiring the original

equipment manufacturer to place a final order. This final order is also called last-time buy, final

buy, end-of-life buy, or buy all-time requirements. On the other hand, complementary strategies

aim to support the final buy in case of a discrepancy between the realized demand and the order

quantity. The wide literature on business strategies complementing a final order includes, but is

not limited to, repairing defective spare parts collected from customers (Behfard et al. 2015, 2018)

while repairing may not be feasible for some of them (van Kooten and Tan 2009), buying back

functional or dysfunctional used products to take them apart and obtain the recoverable spare

parts (Pourakbar et al. 2014, Kleber et al. 2012), considering budget constraints (Hur et al. 2018)

or multiple spare parts in the bill-of-materials of a main product (Bradley and Guerrero 2009),

extending customer contracts (Pinçe et al. 2015, Leifker et al. 2014), designing a new product to

replace the obsolete one (design refresh) (Shen and Willems 2014, Shi and Liu 2020), partially

scrapping spare parts in case of over-stocking (Pourakbar et al. 2012), differentiating customers

based on demand criticality or service contracts (Pourakbar and Dekker 2012), re-manufacturing

(Shi 2019, Bayındır et al. 2007), finding outside/alternative sources (Pourakbar et al. 2012, Frenk

et al. 2019a, van der Heijden and Iskandar 2013, Jack and Van der Duyn Schouten 2000), and

finally, obviating the need to place a final order at time zero (Cattani and Souza 2003, Teunter

and Haneveld 2002, Pinçe and Dekker 2011). Common to all the studies above is the fact that the

end-of-life management problem considered is more than an inventory problem and hence several

actions should be considered simultaneously.

In this study, we focus on the last two strategies described above. The benefit of a complemen-

tary strategy that finds an outside/alternative source, instead of holding spare parts inventory, can

be two-fold. On the one hand, in case the demand for spare parts exceeds the available inventory,

the manufacturer can start using the outside source as a back-up source and avoid underage costs.

On the other hand, it can be used to get rid of excess inventory in case of insufficient demand,

decreasing overage costs. Some examples of this outside/alternative source can be to purchase

expedited spare parts supply from a third-party supplier, to replace the failed product with a new
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generation product (Pourakbar and Dekker 2012, Frenk et al. 2019a, van der Heijden and Iskandar

2013, Jack and Van der Duyn Schouten 2000), or to substitute with another spare part having the

same functionality (Shi and Liu 2020). If the cost of such a source decreases over time (for instance,

due to price erosion of a new generation product), then this strategy can become truly valuable.

Within the literature incorporating an outside/alternative source, Pourakbar et al. (2012) con-

sider a manufacturer who places a final order at time zero and can decide to use an outside/al-

ternative source at each of the forthcoming time periods. Frenk et al. (2019a) assume that the

manufacturer makes a static decision (at time zero) on the final order quantity and on the time to

stop holding inventory (called switching time). Frenk et al. (2019b) extends the model in Frenk

et al. (2019a) with more general parameters and describe the decision to stop holding inventory

by a stopping time, solving an optimal stopping problem by means of a dynamic programming

algorithm. Shi and Liu (2020) consider a design refresh program that substitutes an obsolete part

with an alternative part, while modeling this problem as a two-stage stochastic dynamic program.

We could find a few recent studies which analyze the benefit of providing flexibility in placing

orders in the end-of-life phase. We consider two such flexibilities: timing of the final (or first) order,

and having multiple orders. Regarding the first flexibility, it is reasonable to accept the existence

of a time point at which the manufacturer places a final order. Still, such a time point may need to

be found after completing an in-depth analysis since, after all, the component manufacturers might

be willing to produce the spare parts as long as it is profitable to do so. Among the studies allowing

flexibility in placing orders in the end-of-life phase, Cattani and Souza (2003) analyze the effects

of delaying a final order rather than placing it at time zero, and determine the optimal timing of

the final buy from an aggregated supply chain perspective by including both the manufacturer and

the supplier. They also characterize the benefit of delaying a final order under different demand

scenarios. The second flexibility we consider is the possibility of multiple orders during the end-

of-life horizon. There are numerous examples in the early and more recent literature – here we

present a few. Inderfurth and Mukherjee (2008) devise a dynamic programming model to help

manufacturers who can place extra production/procurement orders as well as remanufacture the

recoverable spare parts. Inderfurth and Kleber (2013) further explore the problem studied by

Inderfurth and Mukherjee (2008), and devise an advanced heuristic that provides near-optimal

solutions and that can quickly solve real-life problem instances. Teunter and Haneveld (2002)
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devise a continuous-time solution when demand is described by a Poisson process (with constant

rate) and find an optimal base-stock policy where order-up-to levels decrease over a finite time

horizon. Pinçe and Dekker (2011) also provide a continuous-time formulation; their model mainly

differs from Teunter and Haneveld (2002) in that partial obsolescence is allowed, that is, intensity

rate drops to a lower level at a known future time instance. Also see David et al. (1997) for a

dynamic programming approach when demand is deterministic.

Finally, we review the components of the objective functions considered. As expected, most

of the objective functions of the above studies are related to costs but are varying in type and in

the timing of charging costs. However, many of them assume that costs are charged at discrete

time points (Shi and Liu 2020). Additionally, many of them assume that there is no fixed cost of

ordering (understandable since one ordering instance is allowed) (Pourakbar et al. 2012). Hence,

having non-zero inventory at time zero would not have a significant effect on the solutions proposed.

Many of those studies, by construction, assume lost-sales for the excess demand or the demand is

satisfied from outside sources (Frenk et al. 2019a), though some of them allow for backordering and

penalize both the time and units backordered (Teunter and Haneveld 2002). Finally, some of the

costs are assumed to be constant over time; exceptions are allowing for discounting, a decreasing

cost of alternative source over time (Frenk et al. 2019a), or an increasing unit procurement cost

after time zero (Teunter and Haneveld 2002).

In our approach, we consider an end-of-life problem where one makes use of the flexibilities

considered above while properly considering their costs (fixed cost per order, as well as others)

simultaneously.

1.2 Novelty of the Approach and Contributions

This study analyzes the value of providing flexibility in placing orders while making use of

strategies related to the end-of-life phase. In more general terms, we consider a multi-period, lost-

sales inventory problem where lost sales can be compensated by an outside source, as well as the

outside source can become the main source if we decide so (modeled by a stopping time). The

novelty of our study is the incorporation of all the following features during modeling and solution

stages.

• Flexibility in ordering: Instead of being required to place a single order at time zero, the man-
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ufacturer has the flexibility to place orders at any time and can limit the number of orders.

Additionally, a time point can be found at which the manufacturer does not choose to place any

orders afterward, i.e., the timing of the final order. All these aspects bring in several flexibili-

ties: Allowing for multiple orders, chances of delaying the first order and limiting the number of

orders.

• Strategic switch to an alternative/outside source: The manufacturer can stop holding inventory

and use an alternative/outside source to satisfy demand (strategically decide not to use internal

sources). This source has a relatively high per-unit cost; however, it can be useful in avoiding

excessive penalty and holding costs in the future. Also, the manufacturer does not need to

put an effort into the use of this source. Such a source can be another option in cases where

redesigning products or spare parts may cannibalize design resources that could otherwise be

used for designing new products (Bradley and Guerrero 2008). The manufacturer’s decision to

stop holding inventory is described by a stopping time.

• Demand variability: The demand for spare parts is described by a non-homogeneous Poisson

process. We also assume a non-increasing intensity function to fit the problem description,

though for most of our results such an assumption is not necessary.

• Cost components: We consider fixed ordering costs as well as non-stationary costs. Additionally,

we compute expected costs when these are charged continuously (rather than at discrete time

points). This allows us to naturally operate with periods which are not necessarily spaced equally

in time. Another motivation for the continuous-time calculation of costs is that the manufacturer

may not be able to review the inventory for long periods, so we may miss correct representation

of costs. For instance, in our model, we describe the exact time that the inventory on hand hits

zero and hence lost-sales is observed by using a stopping time.

• Decision structure and solution methodology: The manufacturer’s problem is to make one of the

three decisions at each period: (1) place an order for spare parts, (2) do nothing and use existing

inventory to satisfy demand, or (3) stop holding inventory permanently and use outside/alterna-

tive source until the end. We cast this combined inventory control and optimal stopping problem

as an “optimal stopping problem with additional decisions” that can be solved by means of a

stochastic dynamic programming (DP) algorithm (see Oh and Özer (2016) for the definition of

optimal stopping problems with additional decisions). Note that DP might be considered as an
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expensive tool for solution for tactical and operational problems. However, most of the typical

end-of-life problems are expected to warrant the cost of the solution approach – which is to be

paid once.

Below we summarize our main contributions to the end-of-life inventory management problem.

• We propose a flexible, expandable taxonomy for the end-of-life inventory management problem

which facilitates grouping the existing studies based on their available decisions.

• We propose a general framework for the problem by combining several issues raised in the lit-

erature and solving it using dynamic programming. We numerically show its benefits over the

other approaches.

• We allow continuous cost computations by using martingale theory to facilitate the calculation

of the value function, allowing the decision maker to adjust the period definition, as well as the

use of non-equal time periods without compromising the exactness of the cost terms computed.

• We provide some structural insights on the problem, as well as on some special cases. Specifically,

we present the relation of the model with the inventory literature and utilize several properties

of the optimal stopping time under various considerations to support decision-making during

the horizon. Under the premise that an optimal strategy (obtained with stochastic DP) is

implemented, we obtain the distribution of stopping times to further support communication

with the outside source provider.

• We discuss important managerial insights that will likely support decision-making throughout

the life cycle of the problem. (1) Some of these insights follow extensive computations. Remarks

are given on the parameter settings for which the flexibilities in the model bring substantial

savings, allowing decision makers to focus. (2) Additional insights follow the structural results

on stopping times – mainly, these results may be shared with the supplier of the alternative

source to ensure smooth transition of service operations to the supplier. (3) Finally, following

numerical solutions, several managerial insights are proposed to control the parameter settings

of the end-of-life problem. Specifically, the effects of controlling customer arrival rates, making

monetary arrangements to support development of the alternative source and extending the

warranty period to decrease the expected cost of the end-of-life period are considered so that the

outcome becomes more attractive for the manufacturing firm.

The rest of this paper is organized as follows. Section 2.1 formally defines the costs consid-
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ered and their computations, whereas Section 2.2 defines our problem and presents the main DP

algorithm. Section 2.3 presents a taxonomy for related problems. Section 3 provides the analytical

results to run the DP algorithms as well as several structural results on stopping times. In Section

4, we provide extensive numerical computations to analyze the advantages of our approach, as

well as to come up with several managerial insights. Finally, in the last section, we conclude, and

present practical implications as well as possible extensions.

2 Problem Definition and Details

Let (Ω,H,P) be a probability space and let T ∈ [0,∞). We start by assuming that the demand

for spare parts is described by a non-homogeneous Poisson process N = (Nt)t∈[0,T ] with an intensity

function λ : [0, T ] → R+ and the associated mean value function t 7→ Λ(t) :=
∫ t

0 λ(u)du. We

assume that λ is right-continuous with left-limits, piece-wise smooth (that is, differentiable except

at finitely many points) and non-increasing. Most of the results in this study can be recovered

without the assumption that λ is non-increasing. Still, such assumption can be more appropriate

to describe the demand for spare parts in the end-of-life phase. The manufacturer periodically

reviews the inventory level and for brevity of notation, we assume that the lengths of time periods

are identical. Our model can be easily adjusted for non-identical period lengths. At each time point

k ∈ T := {0, 1, . . . , T}, the manufacturer observes the current inventory level x ∈ Z+ := {0, 1, . . .}

and decides whether to stop or continue holding inventory. We sometimes refer the time interval

[k, k + 1] as the kth period.

2.1 Representation of Expected Costs

After observing inventory x ∈ Z+ at time k ∈ T, the manufacturer may decide to continue

holding inventory. In this case, an order µk(x) ∈ Z+ can be placed, where the function µk : Z+ → Z+

specifies the order amount. The order cost function c : Z+ → R+ is given by

c(m) :=


K + c̄ m, if m > 0,

0, if m = 0,

(2.1)

where c̄ ∈ R+ is the unit purchasing cost and K ∈ R+ is the fixed ordering cost. We assume that

the ordering cost at period k is discounted by e−δk and the lead time is zero, where δ ∈ [0, 1] is

the discount rate of continuous compounding. After placing an order at time k, the manufacturer
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continues operating during the time interval [k, k + 1], and the holding cost accrues with rate

c1 ∈ R+. Hence, the expected value of inventory holding cost for the kth period is given by

H(k, x) := c1E
[∫ k+1

k
e−δ(u−k)(x− (Nu −Nk))

+du

]
.

The following lemma enables us to calculate the holding cost.

Lemma 2.1. For every k ∈ T, the expected holding cost satisfies H(k, 0) = 0 when x = 0, and

H(k, x) = c1

x−1∑
n=0

n∑
i=0

∫ k+1

k
e−δ(u−k)e−(Λ(u)−Λ(k)) (Λ(u)− Λ(k))i

i!
du,

when x ≥ 1.

The proof of Lemma 2.1 is in Appendix B.

If the inventory level hits zero during [k, k+1] and a defective part arrives, then the manufacturer

loses the opportunity to replace it from the inventory. Instead, (similar to a lost-sales inventory

system) the part is replaced by paying a time-dependent unit cost c2 : [0, T ] → R+ at the time of

arrival. The expected value of such replacement cost is given by

L(k, x) := E

[∫ k+1

(k+1)∧σkx
e−δ(u−k)c2(u)dNu

]
,

where (k + 1) ∧ σkx = min
{
k + 1, σkx

}
, and

σkx := inf{u > k : Nu −Nk ≥ x}

denotes the arrival time of the xth item after time k. We denote σx := σ0
x. The following lemma

enables us to calculate L(k, x).

Lemma 2.2. For every k ∈ T and x ∈ Z+, the expected replacement cost can be expressed as

L(k, x) =

∫ k+1

k
e−δ(u−k)c2(u)λ(u) du

−
x∑
i=0

∫ k+1

k
e−δ(u−k)c2(u)λ(u)e−(Λ(u)−Λ(k)) (Λ(u)− Λ(k))i

i!
du.

The proof of Lemma 2.2 is in Appendix B.

We define the one-period operation cost for period k and inventory level x as

C(k, x) := H(k, x) + L(k, x). (2.2)

On the other hand, after observing inventory x ∈ Z+ at time k ∈ T, the manufacturer may

decide to stop. In this case, the available inventory is scrapped with unit cost c4 ∈ R (if c4 < 0,

then we can interpret it as scrapping revenue). Future defective parts, if any, are replaced by using

an alternative/outside source at a time-dependent unit cost given by a function c3 : [0, T ] → R+.
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Therefore, the expected cost of stopping to hold inventory is given by

S(k, x) := c4x+ E
[∫ T

k
e−δ(u−k)c3(u)dNu

]
. (2.3)

We assume that c̄ > −c4 holds since otherwise, the manufacturer can place an arbitrarily large

order and scrap inventory at the same time. Moreover, it is natural to assume that c2(u) ≥ c3(u)

for every u ∈ [0, T ] so that the use of an outside source is meaningful.

2.2 Dynamic Programming Formulation

Now, we are ready to pose our problem and its dynamic programming formulation. To that

end, let T denote the set of all stopping times τ : Ω→ T of the filtration generated by the demand

process (Nt)t∈[0,T ]. Let π = (τ, µ1, µ2, . . . , µT ) be a policy that specifies a stopping time τ and an

order amount µk(xk) for every time k and inventory xk. Let Π denote the set of all (admissible)

policies. Then, under an arbitrary policy π ∈ Π, the inventory level at time k + 1 is equal to the

inventory at k plus order minus demand:

Xπ
k+1 =

(
Xπ
k + µk(X

π
k )− (Nk+1 −Nk)

)+
, Xπ

0 = x ∈ Z+, (2.4)

where (x)+ := max {0, x}. We use the notation Xk+1 for Xπ
k+1 when π is an arbitrary policy and

there is no risk of confusion, for brevity of notation. The manufacturer’s problem is to determine

both the optimal order amounts and the optimal time to stop in order to minimize the total costs.

We formulate this problem as

V ∗(x) = inf
π∈Π

E

[
τ−1∑
k=0

e−δk
(
c(µk(Xk)) + C(k,Xk + µk(Xk))

)
+ e−δτS(τ,Xτ )

∣∣∣∣∣X0 = x

]
, (2.5)

where x ∈ Z+ is called the initial inventory level and the summation over k is set to zero if τ = 0.

This formulation yields an optimal stopping problem with additional decisions (Oh and Özer 2016)

and can be solved by means of the following stochastic dynamic programming (DP) algorithm.

Define the backward recursion for each k ∈ {T − 1, T − 2, . . . , 0} and xk ∈ Z+ by

V (k, xk) = min {S(k, xk), J(k, xk)} , (2.6)

J(k, x) := inf
m∈Z+

{c(m) +G(k, x+m)} , (2.7)

G(k, y) :=C(k, y) + e−δE
[
V
(
k + 1, (y − (Nk+1 −Nk))

+
)]
.

Here, G denotes the cost of continuing operations one more period, and J denotes the continuation

cost after finding the best order amount. The value function V compares the stopping cost and

the continuation cost. Also define the terminal condition by V (T, xT ) = S(T, xT ) = c4xT . Then,
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the DP formulation solves the manufacturer’s problem in the sense that V (0, x) = V ∗(x) for every

x ∈ Z+. Moreover, the optimal order amount µ∗k(xk) attains the infimum in (2.7). Furthermore, an

optimal stopping time τ∗ is the one that stops the process if S(k, xk) ≤ J(k, xk), in other words,

τ∗ := min{k ∈ T : S(k,Xπ∗
k ) ≤ J(k,Xπ∗

k )}, where π∗ denotes an optimal policy. The next section

provides related problems.

2.3 Taxonomy and Dynamic Programming Representation of Related Problems

In this subsection, we develop benchmark models for the main model in Subsection 2.2. To

keep track of different formulations, we use the notation V a/b/c to describe the decisions allowed.

In this way, we introduce levels of flexibility mentioned to be included or excluded in the problem

as long as the actual environment allows. The symbol a represents how the time for stopping is

decided: a = D means that the decision is dynamic and it is described by a stopping time; a = S

means that the decision is static and made at time zero (we call it switching time); a = T means

that we decide not to stop until the end of horizon. The symbol b represents the number of orders

allowed: If b = M for some M ∈ Z+, then the manufacturer can place M orders throughout the

horizon; b =∞ means that the manufacturer can place an order at each period with no restriction.

Finally, the symbol c represents alternatives with respect to the timing of the first order: c = Z

means that the first order must be placed at time zero and c = F means that the manufacturer is

free to place the first order at any time. Table 1 summarizes the notation. For instance, our main

DP model in Section 2.2 can be denoted by D/∞/F . This notation is helpful to keep track of the

decisions considered for different formulations while comparing them. In numerical analyses, we

compare these models together with our main model to show the value of our approach.

a Time to Stop Holding Inventory

S Static decision – made at time 0
D Decision is made dynamically
T Do not stop until the end of horizon T

b Maximum Number of Orders

M Maximum M ∈ N orders
∞ Unrestricted number of orders

c Order Time

Z First order must be placed at time zero
F First order can be placed at any time

Table 1: Notation for benchmark models.
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2.3.1 D/1/F - Single Order Opportunity at Any Time and Stopping Time

This benchmark dynamic programming formulation analyzes the effects of delaying a single

order, and Cattani and Souza (2003) present this idea in a different setting. Let z ∈ {0, 1} be the

number of remaining orders that the manufacturer can place. The following dynamic programming

algorithm describes this formulation. Define the terminal cost for each xT ∈ Z+ and z ∈ {0, 1} by

V D/1/F (T, xT , z) = S(T, xT ). If z = 0, then define the backward dynamic programming algorithm

for each k ∈ {T − 1, T − 2, . . . , 0} and xk ∈ Z+ by

V D/1/F (k, xk, 0) = min
{
S(k, xk), C(k, xk) + e−δE

[
V D/1/F (k + 1,

(
xk − (Nk+1 −Nk)

)+
, 0)
]}

.

If z = 1, then define the backward dynamic programming algorithm for each k ∈ {T − 1, T − 2, . . . , 0}

and xk ∈ Z+ by

V D/1/F (k, xk, 1)

= min

{
S(k, xk), C(k, xk) + e−δE

[
V D/1/F (k + 1, (xk − (Nk+1 −Nk)

+ , 1)
]
,

min{ inf
m∈Z+

(
c(m) + C(k, xk +m) + e−δE

[
V D/1/F (k + 1, (xk +m− (Nk+1 −Nk))

+ , 0)
])}

.

2.3.2 D/1/Z - Single Order Opportunity at Time Zero and Stopping Time

A prevalent assumption in the literature is that a final order has to be placed at time zero.

Therefore, we develop a dynamic programming algorithm to reflect the manufacturer’s decision

when only one order can be placed at time zero and the manufacturer can stop holding inventory

at any time. This model resembles the one presented by Pourakbar et al. (2012). Define the

backward dynamic programming algorithm for each k ∈ {T − 1, T − 2, . . . , 0} and xk ∈ Z+ by

.
V D/1/Z(k, xk) = min

{
S(k, xk), C(k, xk) + e−δE

[ .
V D/1/Z(k + 1,

(
xk − (Nk+1 −Nk)

)+
)
]}

.

Also define the terminal condition by
.
V D/1/Z(T, xT ) = S(T, xT ). The optimal order quantity at

time zero and the value of this dynamic program is found by calculating

V D/1/Z(x) = inf
m∈Z+

(
c(m) +

.
V D/1/Z(0, x+m)

)
, x ∈ Z+. (2.8)

It is possible to see the following relation between D/1/F and D/1/Z: While solving the model

D/1/F , if we decide to place an order at time k, then we solve the model D/1/Z with a different

time horizon that is equal to T − k.
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2.3.3 S/∞/F or S/1/F or S/1/Z

S/∞/F can be formulated as a special case of D/∞/F . For each switching time k ∈ T, we

implement a restricted version of the dynamic programming algorithm and select the best switching

time k∗. Moreover, S/1/F can be formulated as a special case of D/1/F presented in Subsection

2.3.1. We modify the value function V D/1/F by eliminating the stopping option with cost S̃(k, xk)

and solve the DP algorithm. Finally, S/1/Z can be formulated as a special case of D/1/Z presented

in Subsection 2.3.2. For every t ∈ T, we implement D/1/Z without being able to stop.

2.3.4 T/∞/F or T/1/F or T/1/Z

These benchmark models are further special cases of S/∞/F , S/1/F and T/1/F . They resemble

the classical inventory models which can be solved by means of standard DP algorithms. For

instance, see Beyer et al. (2010, Chapter 4).

2.3.5 S/M/F or D/M/F for M>1

These models can be formulated by using a similar idea as for D/1/F in Subsection 2.3.1 by

representing the number of setups as a state variable. Finally, Table 2 relates the benchmark models

with some of the more relevant literature mentioned before.

Model Explanation Related Studies

D/∞/F Multiple orders and stopping time This study

D/1/Z Single order at time zero and stopping time
Frenk et al. (2019b)
Pourakbar et al. (2012)
Frenk et al. (2019c)

S/1/Z Single order at time zero and switching time Frenk et al. (2019a)

T/∞/F Multiple orders without outside source

Teunter and Haneveld (2002)
Pinçe and Dekker (2011)
Inderfurth and Mukherjee (2008)
Inderfurth and Kleber (2013)

T/1/F Delayed single order without outside source Cattani and Souza (2003)

T/1/Z Single order without outside source

Behfard et al. (2018)
Hur et al. (2018)
Teunter and Fortuin (1999)
Jack and Van der Duyn Schouten (2000)

Table 2: Relation between the benchmark models and the previous studies. Notation for the models is
presented in Table 1.
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3 Structural Results

This section provides our structural results regarding the models and the analytical insights

regarding the management of end-of-life problem. In Subsection 3.1, we reduce the computation

of DP algorithms by reformulating the most general problem D/∞/F . Subsection 3.2 includes our

main structural results for D/∞/F . Finally, in Subsection 3.3, we show further analytical insights

that motivate the use of an outside source and flexibility in placing orders.

3.1 Structural Results for Dynamic Programming Computations

We reduce the computation of the stopping cost S(k, xk) in D/∞/F and other benchmark

models by reformulating V ∗(x) in (2.5). To that end, we further define for each k ∈ T and x ∈ Z+

the new cost of stopping by S̃(x) := c4x and the new one-period operation cost by

C̃(k, x) :=c1E
[∫ k+1

k
e−δ(u−k) (x− (Nu −Nk))

+ du

]
+ E

[∫ k+1

k
e−δ(u−k) [c2(u)− c3(u)] dNu

]
− E

[∫ (k+1)∧σkx

k
e−δ(u−k)c2(u) dNu

]
. (3.1)

Then, we use the following proposition to reformulate V ∗(x) in (2.5).

Proposition 3.1. Let x ∈ Z+ and define the new reformulated problem by

Ṽ ∗(x) := inf
π∈Π

E

[
τ−1∑
k=0

e−δk
(
c(µk(Xk)) + C̃(k,Xk + µk(Xk))

)
+ e−δτ S̃(Xτ )

∣∣∣∣∣ X0 = x

]
(3.2)

Then, the new problem is equivalent to the original one in the sense that V ∗(x) = Ṽ ∗(x) + A for

every x ∈ Z+, where A := E
[∫ T

0 e−δuc3(u)dNu

]
∈ R+ is a constant.

The proof of Proposition 3.1 is in Appendix C.

Recall that in the original problem V ∗(x), the stopping cost S(k, x) includes an integral term and

depends on both time k and inventory x. In the equivalent problem Ṽ ∗(x), however, the stopping

cost S̃(x) depends only on inventory x and so the computation of Ṽ ∗(x) takes less time. Hence, in

view of Proposition 3.1, we solve Ṽ ∗(x). Define the backward DP for each k ∈ {T − 1, T − 2, . . . , 0}

and xk ∈ Z+ by

Ṽ (k, xk) = min
{
S̃(xk), J̃(k, xk)

}
, (3.3)

J̃(k, x) := inf
m∈Z+

(
c(m) + G̃(k, xk +m)

)
, (3.4)

G̃(k, y) :=C̃(k, y) + e−δE
[
Ṽ
(
k + 1, (y − (Nk+1 −Nk))

+
)]
.

Here, G̃ denotes the continuation cost, J̃ denotes the continuation cost after finding the best
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order amount, and Ṽ compares the stopping and the continuation costs. Also define the terminal

condition by Ṽ (T, xT ) = S̃(xT ) = c4xT for each xT ∈ Z+. Then, the next corollary states that

the DP algorithm described by the recursion in (3.3) can be used to solve this new re-formulated

problem Ṽ ∗(x).

Corollary 3.2. Ṽ (0, x) = Ṽ ∗(x) for every x ∈ Z+. Moreover, the optimal order amount µ̃∗k(xk)

attains the infimum in (3.4). Furthermore, an optimal stopping time τ̃∗ ∈ T is the one that stops

the process if S̃(xk) ≤ J̃(k, xk) in (3.3), in other words, τ̃∗ := min{k ∈ T : S̃(X π̃∗
k ) ≤ J̃(k,X π̃∗

k )},

where π̃∗ := (τ̃∗, µ̃∗0, . . . , µ̃
∗
T ) is an optimal policy.

Finally, the following proposition enables us to compute C̃ so that we can compute Ṽ (0, x).

Proposition 3.3. For every k ∈ T, the one-period operation cost C̃(k, x) in (3.1) satisfies

C̃(k, 0) =

∫ k+1

k
e−δ(u−k)[c2(u)− c3(u)]λ(u) du

when x = 0, and

C̃(k, x) =c1

x−1∑
n=0

n∑
i=0

∫ k+1

k
e−δ(u−k)e−(Λ(u)−Λ(k)) (Λ(u)− Λ(k))i

i!
du

+

∫ k+1

k
e−δ(u−k)[c2(u)− c3(u)]λ(u) du

−
x∑
i=0

∫ k+1

k
e−δ(u−k)c2(u)λ(u)e−Λ(u)−Λ(k) (Λ(u)− Λ(k))i

i!
du (3.5)

when x ≥ 1.

The proof of Proposition 3.3 is in Appendix C.

3.2 Structural Results for D/∞/F

3.2.1 Characterization of Optimal Solution

The main problem D/∞/F falls into the category of an optimal stopping problem with ad-

ditional decisions. More specifically, the inventory situation considered is a multi-period problem

with lost-sales in a setting with periodic review, finite horizon, non-stationary stochastic demand,

non-stationary costs (continuously charged), and zero ordering lead time. We first present a struc-

tural result for our most general case and then discuss special cases that lead to more structural

properties. For each time k ∈ T, define

RSk :={x ∈ Z+ : S̃(x) ≤ J̃(k, x)},

ROk :=
{
x ∈ Z+ : inf

m≥1
(c(m) + G̃(k, x+m)) < min{S̃(x), G̃(k, x)}

}
,
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RCk :={x ∈ Z+ : Ṽ (k, x) = G̃(k, x) < S̃(x)}.

Here, the sets RSk , R
O
k and RCk are respectively called stopping set, ordering set and continuation

set. They denote the set of inventory levels that we stop, order and continue, respectively.

Proposition 3.4. The optimal solution π̃∗ defined in Corollary 3.2 can be summarized by three

disjoint regions for the incoming stock value for every decision epoch as well as order-up-to levels.

1. The ordering region {(k, x) ∈ T×Z+ : x ∈ ROk }, the stopping region {(k, x) ∈ T×Z+ : x ∈ RSk },

and the continuation region {(k, x) ∈ T× Z+ : x ∈ RCk } are disjoint subsets of T× Z+.

2. π̃∗ is a policy such that if X π̃∗
k ∈ RSk , then we stop; if X π̃∗

k ∈ RCk , then we continue without

taking an action; if X π̃∗
k ∈ ROk , then we place an order and increase inventory to an order-up-to

level. Hence, for each inventory level in ROk , there exists an optimal order-up-to level.

The proof of Proposition 3.4 is in Appendix D.

Proposition 3.4 states an intuitive result that, among all different order amounts and stopping

times, we can describe an optimal solution by using disjoint ordering, continuation and stopping

regions. Moreover, breaking the ties between costs does not cause any problem so that the regions

can be disjoint.

Next, we discuss two special cases for the environment described by Proposition 3.4. The first

special case of our model can be obtained by removing the possibility to stop, or in other words, by

requiring the manufacturer to continue until the end-of-horizon. In such a case, a time-dependent

(s, S) policy is optimal to characterize the ordering decisions. We refer the reader to Beyer et al.

(2010, Theorem 4.2) for the optimality of (s, S) policy in a more general structure, except that we

compute costs in continuous time. Still, Beyer et al. (2010, Theorem 4.2) applies here since Frenk

et al. (2019a) shows that the one-period operation cost C is convex.

The second special case of our model is obtained by setting the setup cost as K = 0, allowing

backordering, and restricting the penalty cost to take place at review periods only (rather than

using a stopping time σx). In such a case, an optimal stopping policy is the two-sided threshold

policy that stops the process at time t if the inventory level xt /∈ [xt, x̄t], where xt, x̄t ∈ R are

constants. We refer the reader to Oh and Özer (2016, Proposition 12) for the proof. Under our

general framework, however, we do not observe such thresholds in the numerical analysis. For

instance, when the inventory level drops to zero, the manufacturer may wish to place an order
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rather than to stop, eliminating the possibility of a lower threshold.

Finally, it is worth mentioning that the non-stationary parameters and the existence of a positive

setup cost limit the known analyses to be implemented. We illustrate these limitations by solving

D/∞/F numerically with a data set presented by Frenk et al. (2019a) and K = 2000. Table 3

demonstrates the ordering, stopping and continuation regions. We can see that the ordering and

stopping regions are intertwined (e.g., k = 23). Therefore, even if there exists a threshold re-order

level, it is possible that we stop when inventory is below the threshold, rather than placing an

order. Moreover, the regions are neither convex nor do they have monotone boundaries. The

stopping region does not have monotone boundary possibly because of the decreasing intensity

rate and the cost of outside source. On the one hand, if the intensity rate declines over time,

then the manufacturer may not take a preventive stopping action (which may prevent lost-sales)

although the inventory is small (e.g., x ∈ {3, 4, 5}). This makes the stopping region smaller in the

last stages. On the other hand, when the cost of outside source declines over time, the stopping

decision becomes more attractive, making the stopping region larger. Hence, the stopping region

may be affected oppositely by the intensity rate and the cost of outside source.

x
k

0 18 22 23 24 25 40 43 44 48 49

846
770 Stop
375
336
327 Continue
7
6
5
4 Order
3
2
1 Stop
0

Table 3: An illustrative optimal solution and the corresponding regions. Horizontal axis represents time k
and vertical axis represent inventory level x.

3.3 Structural Results Regarding Stopping Times

Stopping time plays a crucial role in the end-of-life inventory management problem. With the

scope defined in this paper, stopping time indicates the time after which all the subsequent demand

is to be satisfied by an alternative source. The alternative source can be any origin (own, any

supplier, a competitor, a remanufacturing repair shop, etc. – we simply call it the outside source)
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which agreed to cover the demand for the part considered until the end of horizon. Hence, it is

important for the end-of-life management executives to warn the outside source on the possibilities

of the time to switch - a crucial information for the operation of the outside source. Hence, in

this section we aim to obtain some structural results on stopping times so as to smooth out the

problems that may occur during the realization of this transition.

The results we have in the following subsections are valid for any t, where t represents the

time at which we review the inventory system. The only information we need to know is the state

information (time t and inventory x) for the details to work on. Finally, we note that even if we

allow t to be an element of [0, T ], we present all the results for t = 0 to avoid additional notation.

3.3.1 Bounds on the Switching Time

We consider the manufacturer at a later stage in the end-of-life phase (any time t) when existing

inventory looks sufficient, and no further order is expected to be placed. We aim to extract bounds

on the time to stop when the manufacturer is willing to set an exact time (which is called the

switching time) and communicate it with the provider of outside source.

We consider t = 0 without loss of generality. Let C(x, τ) denote the total cost incurred if the

inventory is x and if we decide to stop at τ ∈ T. Then, the function C : Z+×T→ R+ is defined by

C(x, τ) :=E

[
τ−1∑
k=0

e−δkC(k,Xk) + e−δτS(τ,Xτ )

]
which is equivalent to

C(x, τ) =c1E
[∫ τ

0
e−δu(x−Nu)+du

]
+ E

[∫ τ

τ∧σx
e−δuc2(u)dNu

]
+ E

[∫ T

τ
e−δuc3(u)dNu

]
+ c4e

−δτE[(x−Nτ )+]. (3.6)

While offering the next insights, we allow τ to be continuous in order to take derivative of C

with respect to τ . Hence, we use the same form of C(x, τ) in (3.6) while allowing τ to be any value

in [0, T ]. In other words, we extend the definition of C as function C : Z+ × [0, T ] → R+ given by

(3.6). We derive the insights by finding upper and lower bounds on the solution of the following

problem:

inf
τ∈[0,T ]

C(x, τ). (3.7)

To analyze the properties of C, we make the same general assumptions with Frenk et al. (2019a):

NON-INC: The functions c3 and u 7→ c̃2(u) := c2(u) − c3(u) are right-continuous with left-limits,
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piece-wise smooth (that is, differentiable except at finitely many points) and non-increasing.

POS: The functions c3 and c̃2 are non-negative (maps from [0, T ] to R+) and the quantities c4 and

c1 − δc4 are in R+.

The assumption POS means that the parameters are positive and it is quite general as we

are already minimizing the costs. On the other hand, NON-INC states that the functions are non-

increasing. Such assumption is more relevant in the end-of-life phase. The cost of outside source, c3,

decreases over time, as the manufacturer is better prepared to use such a source. Moreover, the

lost sales penalty, c̃2, decreases over time, as the manufacturer is better prepared for the possibility

of an insufficient inventory while nearing the end of horizon.

Let τ∗ ∈ [0, T ] denote a best switching time that attains the infimum in (3.7). The following

two propositions show upper and lower bounds on τ∗.

Proposition 3.5. Assume NON-INC and POS. Let τub be the smallest τ value satisfying

c̃2(T ) ≥ P {Nτ ≤ x− 1} [c2(τ) + c4]. (3.8)

If the inequality does not hold for any τ ∈ [0, T ], then let τub = T . Then, τ∗ ≤ τub.

The proof of Proposition 3.5 is in Appendix F.

Proposition 3.6. Assume NON-INC and POS. Also assume that λ is a non-increasing function.

Let τ lb be the largest τ value satisfying λ(τ) ≥ 1 and

P {Nτ ≤ x− 1} [c2(τ) + c4] ≥ x(c1 − δc4) + c̃2(0). (3.9)

If the inequality does not hold for any τ ∈ [0, T ], then let τ lb = 0. Then, τ lb ≤ τ∗.

The proof of Proposition 3.6 is in Appendix F.

We extract the following insights for the bounds on the best switching time τ∗.

• The upper and lower bounds depend on the inventory level at the later stage, x, the demand

until we stop, Nτ , and the cost of outside source, c2(τ).

• The upper bound τub can be less than the remaining time in the horizon, T , if the number of

arrivals up to τub sufficiently exceeds the inventory level x (so that the term P{Nτub ≤ x− 1} is

small) and if the outside source is cheap (so that the term c2(τub) is small). Hence, an insufficient

inventory level and a decreasing cost of outside source prompt the use of such a source.

• The observation for the lower bound complements the one for the upper bound. Indeed, τ lb can

be larger than 0 if the number of arrivals before τ lb is considerably less than inventory level x
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(so that the term P{Nτ lb ≤ x− 1} is small) and if the cost of outside source is still high (so that

the term c2(τ lb) is large). In such a case, it may be better to delay the use of the outside source.

Hence, the manufacturer, while being at a later stage in the phase, is more motivated to stop before

the last period T as long as the inventory level is sufficient to prevent ordering but not enough

to cover the demand, and the outside source is relatively cheap. The properties above enable the

manufacturer to communicate with the provider of the outside source.

3.3.2 Stopping Times and Final Order Quantity

Our next analysis reveals that when the system is at a later stage of the horizon, the decision on

the time to stop affects the size of the final order. In turn, this creates a domino effect between order-

up-to levels, where the previous levels are impacted by the subsequent levels. Thus, order quantities

and stopping times are related. Such relation motivates the use of a model that incorporates both

multiple orders and stopping time.

To materialize this relation and use the results for more information on the stopping times, we

analyze the manufacturer’s decisions at a later stage when a final order and a time to stop are to be

decided together so that the outside source provider can be informed. Without loss of generality,

we define t = 0 as the current period, since one can update the non-stationary parameters to

accommodate for a change in current time. Here, we aim to extract the relation between the

switching time and the final order size. Thus, the objective is to choose an order amount m and a

switching time τ that solve

inf
τ∈[0,T ],
m∈Z+

(c(m) + C(m+ x0, τ)) , x0 ∈ I,

where c is the ordering cost function defined in (2.1) and C is the combined operation cost function

defined in (3.6). By proceeding as in Frenk et al. (2019a), we can show that x 7→ C(x, τ) is a

discrete-convex function for each fixed τ , under the assumptions NON-INC and POS above. Then,

we can follow the arguments presented by Porteus (2002) and state that the (s(τ), S(τ))-policy

is an optimal policy to describe the ordering decision, where the order-up-to level S(τ) and the

re-order level s(τ) depend on the switching time τ . Moreover, the following proposition shows that

τ 7→ S(τ) is a non-decreasing function when suitable conditions hold.

Proposition 3.7. Assume NON-INC and POS. Also assume that λ is a non-increasing function.
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Then, for every ε, τ1, τ2 ∈ [0, T ] such that (i) τ1 < τ2, (ii) S(τ1) ≥ S(τ2), (iii) S(τ1) ≤ Λ(τ2) and

(iv) c1 ≤
[

Λ(u)− S(τ1)

Λ(u)

]
λ(u)c3(u), for all u ∈ [τ2, τ2 + ε],

we have S(τ2) ≤ S(τ2 + ε).

The proof of Proposition 3.7 is in Appendix G.

Proposition 3.7 states that small perturbations in switching time (from τ1 to τ2) may not affect

the order-up-to level; however, moderate deviations (from τ1 to τ2 + ε) raise the level. If the

manufacturer decides to stop at a later time without updating the level (conditions (i) and (ii)),

but expected total demand exceeds the level (condition (iii)), and the cost rate of outside source,

λ(u)c3(u), is still high in the infinitesimal future (condition (iv)), then the order-up-to level in-

creases. Proposition 3.7 enables us to extract the following insights.

• The time when the manufacturer decides to stop has an impact on the previous order amounts.

• If the disposal time of the inventory is delayed moderately (in the sense of conditions (i)-(iv)),

then the final order amount that will be used to satisfy the demand increases.

• In case the outside source is not available before some time (say, τ2), then most likely we need

to increase the order-up-to level.

This analysis reveals that stopping time and order levels are alternatives and complements for

managing the end-of-life inventory system. The use of both strategies simultaneously is likely to

fine-tune the results, yielding less expected costs.

3.3.3 Distribution of Optimal Stopping Time

In the previous two subsections, we consider the time periods after which it is unlikely to place

an order, and analyze possible properties of the switching time. We consider those structural results

as important since they can be utilized to support decision-making in the later stages of the end-of-

life problem. Here we go one-step further. Once the optimal solution strategy to the DP problem

is obtained, we can trace the solution in any period, as explained by Proposition 3.4. It turns out

that one can do better: using the backwards trace, it is possible to obtain the distribution of the

stopping time that is dictated by the optimal solution of DP.

To be more specific, optimal stopping decisions are functions of inventory level at designated

times. Hence, the randomness of the stopping times is solely dependent on the demand process

and optimal strategy implemented, where the latter can be summarized by when-to-order and
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how-much-to-order decisions together with stopping decisions. Given the discrete nature of time,

it is possible to compute the distribution of stopping times. In Appendix E, we show that we can

compute the probabilities of the stopping time distribution efficiently by using the stated recursions.

One can use the structure of the recursive relations to come up with the distribution of stopping

times at any point in time given the inventory level. Of course, this might require an expensive

operation; however, depending on the characteristic and value of the inventory carried, it might be

reasonable to put the effort. Hur et al. (2018) describes such an environment where all the effort

is spent to estimate the demand distribution for the whole horizon to implement an order policy.

Thus, the comments made at the beginning of Section 3 regarding use of stopping times can be

realized with the knowledge of the relevant probability distribution at any time.

4 Numerical Analysis

In Section 3 we demonstrate with some structural results that the flexibilities that can be con-

sidered within the end-of-life inventory management problem are promising. This section provides

numerical results regarding the output of the dynamic programming algorithms and the analytical

results presented earlier. For numerical calculations, we further assume that the cost of outside

source is given as c3(u) = c̄3e
−γu, where c̄3 ∈ R+ is a constant and γ ∈ R+ is the decline rate.

Moreover, we assume that c2(u) = c̄2 + c3(u) for some c̄2 ∈ R+ which we interpret as the penalty

of lost sales. We allow c4 to be negative or positive. Finally, to facilitate computations, we assume

that the intensity function λ is piecewise constant whose value changes at every t ∈ {0, 1, . . . , T − 1}

and it is constant during [t, t + 1). Table 4 shows the set of parameter values and Table 5 shows

the set of intensity functions used in the numerical analysis. We note that the ranges as stated in

Table 4 incorporate in relative terms the case data considered by Frenk et al. (2019a). Additionally,

we specify a fixed ordering cost and various forms of the intensity function to represent the rate

of decrease, as presented in Table 5. Note that for different cases, the demands are all comparable

as the total expected demand over the horizon is kept constant. The parameter settings and their

corresponding numbers are presented in Appendix H.

We code our models by using MATLAB and run them on a laptop computer with an Intel(R)

Core(TM) i7-7700HQ processor with 2.80GHz CPU. The computation of one-period operation cost

C(k, x) (for all k and x values) takes approximately 800 and 1750 seconds of CPU time when
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T = 50 and T = 100, respectively. The computation of DP algorithm takes approximately 25

and 60 seconds of CPU time when T = 50 and T = 100, respectively. We verified our code by

comparing the output of benchmark models and the output presented by Frenk et al. (2019a).

Parameter Name Set of Values

Unit Procurement Cost c̄ = 100
Setup Cost K ∈ {0, 10c̄, 50c̄}
Holding Cost c1 = 0.01c̄
Penalty Cost c̄2 ∈ {2c̄, 10c̄}
c3(0) at time zero c̄3 = 2c̄
Discount of c3 γ ∈

{
10−6, 0.01

}
Scrapping Cost c4 ∈ {c̄/4,−c̄/4}
Planning Horizon T ∈ {50, 100}
Time Discount δ ∈

{
10−6, 0.005

}
Expected Total Demand

∫ T
0 λ(u) du = 500

Intensity Functions Convex, Concave, Linear, Constant
Presented in Table 5

Table 4: Parameter values used in numerical analysis. The total number of parameter settings is 384. Base
case parameters are c̄2 = 2c̄, γ = 0.01, c4 = c̄/4, T = 50, δ = 0.005, with convex λ.

Function Type Expression

T = 50 T = 100

Convex λ(t) = λ0(0.9)t λ(t) = λ0(0.96)t

Concave λ(t) = λ0 − (0.045t)3 λ(t) = λ0 − (0.015t)3

Linear λ(t) = λ0 − 0.392t λ(t) = λ0 − 0.099t

Constant λ(t) = λ0 λ(t) = λ0

Table 5: Piecewise constant intensity functions λ used in numerical analysis. The value of λ(t) changes at
every t ∈ {0, 1, . . . , T − 1} and it is constant during [t, t+ 1). The initial point λ0 ∈ R+ is selected such that

expected total demand
∫ T

0
λ(t) dt is equal to 500.

We present our computational results in two subsections. In Subsection 4.1, we compare the

benefits of our approach with the benchmark models. In Subsection 4.2, we analyze the effects of

problem parameters. These analyses give us further insights on how our approach can be used to

handle the end-of-life management problem effectively.

4.1 Analysis of the Benefits of the Proposed Approach

In this subsection, we compare all models by using the parameter values in Table 4. To be more

specific, we consider the settings (as numbered) which are presented in Appendix H. As comparison

basis, we consider the percentage increase in the expected discounted total cost over the horizon

for not employing a model which utilizes more flexibility (or flexibilities) over the assumed current
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model with those flexibilities. We summarize the benefits in four subsections: The first three

subsections assess the contribution of any specific flexibility over the current one in an isolated

manner, whereas the fourth subsection analyzes combination effects.

We initially demonstrate the benefits over a base case with the parameters c̄2 = 2c̄ = 200, γ =

0.01, c4 = c̄/4 = 25, T = 50, δ = 0.005, convex λ. The setting number for base case is 1 in

Appendix H. The base case is a setting which is one of the closest to the parameters used in Frenk

et al (2019a). We then show results for all the settings and report minimum, average, and maximum

percentage increase in the expected discounted cost if those flexibilities are not considered. We end

each subsection with a remark summarizing the findings.

4.1.1 Loss for Not Allowing Multiple Orders

We first present the comparisons under the base case. Table 6 presents percent loss if the

number of orders is limited to 1 compared to the possibility of multiple ordering under two cases:

with no stopping time (a = T as given in the taxonomy) and with stopping time (a = D). The

case with stopping time is presented in parentheses for various values of x and K.

K
x

0 100 250

0 17.2 (12.1) 21.4 (15.1) 31.1 (21.1)
1000 6.3 (2.8) 8.6 (4.4) 15.3 (8.9)
5000 0.5 (0.0) 2.6 (1.9) 9.3 (7.2)

Table 6: Percentage difference 100× T/1/Z−T/∞/F
T/∞/F for different initial inventory x and setup cost K values.

The numbers in parentheses show the value of 100× D/1/Z−D/∞/F
D/∞/F under the same parameter setting. Base

case parameters are used.

As expected, the use of stopping time is an effective tool as observed with lower percentages

in parentheses. As expected, when x = 0 and K = 5000, we have small percentages indicating

that the traditional approach, assuming a large fixed ordering cost and hence ordering only once,

has a strong logic. However, with some initial inventory, one can observe that the penalty of not

employing a more flexible approach can be significant.

We present our results for all our runs in Table 7. Note that we only report the expected percent

loss figures under the case where we employ stopping time. For the moderate value of the fixed

ordering cost (K = 1000), the average penalty percentages for different initial inventory values are

all above 10%. When we analyze the settings where we attain maximum or minimum values, we

notice that most are the settings where we assume a constant intensity rate over time (#125, #113,
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#121). This is expected as the use of flexibilities under some settings are more pronounced when

the system is almost stationary or have no effect for the remaining settings.

K
x

0 100 250

% Set# % Set# % Set#
Max 60.4 125 Max 73.4 125 Max 70.5 62

0 Avg 24.7 Avg 29.7 Avg 32.3
Min 9.0 11 Min 11.2 11 Min 3.1 121

Max 31.9 125 Max 43.3 125 Max 45.3 62
1000 Avg 10.0 Avg 14.2 Avg 17.7

Min 1.6 11 Min 2.6 12 Min 0.0 121

Max 11.1 125 Max 22.3 125 Max 26.9 109
5000 Avg 1.9 Avg 6.2 Avg 10.5

Min 0.0 27 Min 0.0 113 Min 0.0 49

Table 7: Percentage difference 100 × D/1/Z−D/∞/F
D/∞/F for different initial inventory x and setup cost K

values. For each x and K, we present maximum, average and minimum values over all parameter settings.
Set# shows the setting numbers that attain the maximum or minimum. Setting numbers are presented in
Appendix H.

Remark 4.1. Allowing multiple orders is important for systems with reasonable fixed ordering

cost. However, the advantages may be offset by the use of stopping time and/or delaying the first

order when there is some initial inventory.

4.1.2 Loss for Not Utilizing Stopping Time

We present the comparisons under the base case parameters in two tables. Table 8 presents the

percent loss if only one order is given at time zero under two cases: with a switchover time (a = S

as given in the taxonomy) as to no stopping time (a = T ) and with a stopping time (a = D) as to

a switchover time (a = S). The latter case is presented in parentheses for various values of x and

K. Table 9 presents the percent loss if multiple orders are allowed with a stopping time (a = D)

as to no stopping time (a = T ).

K
x

0 100 250

0 0.7 (4.2) 0.8 (5.2) 1.2 (7.8)
1000 0.6 (4.1) 0.8 (5.0) 1.1 (7.5)
5000 0.6 (3.9) 0.7 (4.6) 1.0 (6.6)

Table 8: Percentage difference 100× T/1/Z−S/1/Z
S/1/Z for different initial inventory x and setup cost K values.

The numbers in parentheses show the value of 100× S/1/Z−D/1/Z
D/1/Z under the same parameter setting. Base

case parameters are used.
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K
x

0 100 250

0 0.4 0.5 0.7
1000 1.4 1.8 2.7
5000 3.9 4.6 5.6

Table 9: Percentage difference 100× T/∞/F−D/∞/F
D/∞/F for different initial inventory x and setup cost K values.

Base case parameters are used.

Note that determining a switching time at the beginning does not constitute much improvement

over no stopping time. However, moving to a stopping time improves the results, even under

multiple orders.

We present our results for all our runs in Table 10. Note that we only report the expected

percent loss figures under the case where we employ stopping time as compared to switching time.

The results show that the fixed ordering cost does not significantly affect the outcome as we limit

ourselves to a single order. When we analyze the settings where we attain the least loss values, we

notice that most are the settings where we assume a constant intensity rate over time (#111). This

is expected as we probably resort to stopping decision occasionally when we have almost stationary

demand. Similarly, #24 seems to be the setting where we attain maximum loss for not using

stopping time. Setting #24 is the case where demand is large at the beginning, the horizon is long

and finally we gain a positive return (disposal value) when we stop with inventory, all indicating

that a more precise selection of the disposal time increases the benefits.

K
x

0 100 250

% Set# % Set# % Set#
Max 8.9 24 Max 10.6 24 Max 14.8 24

0 Avg 4.6 Avg 5.5 Avg 8.0
Min 2.1 111 Min 2.4 111 Min 3.4 111

Max 8.8 24 Max 10.4 24 Max 14.4 24
1000 Avg 4.5 Avg 5.4 Avg 7.8

Min 2.0 111 Min 2.4 111 Min 3.3 111

Max 8.3 24 Max 9.7 24 Max 13.1 24
5000 Avg 4.2 Avg 4.9 Avg 7.0

Min 1.9 111 Min 2.0 89 Min 3.0 111

Table 10: Percentage difference 100× S/1/Z−D/1/Z
D/1/Z for different initial inventory x and setup cost K values.

For each x and K, we present maximum, average and minimum values over all parameter settings. Set#
shows the setting numbers that attain the maximum or minimum. Setting numbers are presented in Appendix
H.

Remark 4.2. Disposing the available inventory seems to be a critical decision, especially for some
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remaining time and inventory level combinations (see Subsection 3.3 for supporting analytical re-

sults). Moreover, the dynamic selection of this time (via stopping time) as compared to determining

at the beginning can be valuable in case the manufacturer has such flexibility. However, we notice

that under the case where we allow for multiple orders, the effect of stopping time is reduced though

not diminished.

4.1.3 Loss for Not Delaying the First Order

We first present the comparisons under the base case. Table 11 presents the percent loss if we

allow for only one order but may delay the time to order under two cases: with a switchover time

(a = S as given in the taxonomy) and with a stopping time (a = D). The case with stopping time

is presented in parentheses for various values of x and K.

K
x

0 100 250

0 0.0 (0.0) 2.3 (2.0) 10.1 (7.9)
1000 0.0 (0.0) 2.3 (2.0) 9.9 (7.8)
5000 0.0 (0.0) 2.2 (1.9) 9.1 (7.2)

Table 11: Percentage difference 100× T/1/Z−T/1/F
T/1/F for different initial inventory x and setup cost K values.

The numbers in parentheses show the value of 100× D/1/Z−D/1/F
D/1/F under the same parameter setting. Base

case parameters are used.

As we expect, there is no difference when x = 0. Also, the results show that the fixed ordering

cost does not significantly affect the outcome as we limit ourselves to a single order. As x grows,

we observe an increase in the losses. Note that, stopping time is a powerful tool as it partially

compensates the mistake in the timing of the first order, and hence the benefits we observe in

parentheses are smaller.

We present our results for all our runs in Table 12. Note that we only report the expected

percent loss figures under the case where we also utilize stopping time. The observations made for

Table 11 are valid here, as well. However, when looking at the percentages, the maximum values

here are significant. When we analyze the settings where we attain the maximum loss values,

we notice that most are the settings where we assume a constant intensity rate over time (#125,

#109). This is expected as the use of flexibilities under some settings are more pronounced when

the system is almost stationary.

Remark 4.3. In case the manufacturer is given the opportunity to order at any time, the cutoff

initial inventory level which prevents ordering at time zero can be quite low. Therefore, the prevalent
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K
x

0 100 250

% Set# % Set# % Set#
Max 0.0 1 Max 13.5 125 Max 32.3 125

0 Avg 0.0 Avg 6.2 Avg 14.8
Min 0.0 1 Min 1.2 12 Min 1.3 121

Max 0.0 1 Max 13.4 125 Max 31.3 61
1000 Avg 0.0 Avg 6.1 Avg 13.9

Min 0.0 1 Min 1.1 12 Min 0.0 121

Max 0.0 1 Max 13.2 125 Max 26.9 109
5000 Avg 0.0 Avg 5.2 Avg 10.4

Min 0.0 1 Min 0.0 113 Min 0 49

Table 12: Percentage difference 100 × D/1/Z−D/1/F
D/1/F for different initial inventory x and setup cost K

values. For each x and K, we present maximum, average and minimum values over all parameter settings.
Set# shows the setting numbers that attain the maximum or minimum. Setting numbers are presented in
Appendix H.

assumption that a final order is to be placed at time zero can be a strong assumption, possibly

leading to significant losses.

4.1.4 Value of Combining the Features

When we combine all the effects, the overall results indicate promising savings. Here we only

present the comparisons under the base case.

Table 13 presents the cases where we implement the optimal stopping strategy and record the

percent loss if we do not use the flexibility of delaying the first order as well as multiple order

opportunities. As noted before, the optimal stopping time can compensate the advantages when

using other flexibilities. Nevertheless, we have significant losses if we do not implement other

flexibilities even in the case where we have small K and small x values. Of course, the advantages

reduce (or disappear for x = 0) with larger K values.

K
x

0 100 250

0 12.1 15.1 21.1
1000 2.8 4.4 8.9
5000 0.0 1.9 7.2

Table 13: Percentage difference 100× D/1/Z−D/∞/F
D/∞/F for different initial inventory x and setup cost K values.

Base case parameters are used.

Tables 14 and 15, on the other hand, give us another interpretation. If we do not use our full

flexibility scheme compared to the standard final order approach with no stopping, then our losses

can be as much as 32% when x = 250 and K = 0 in Table 14. Almost half of the loss comes from
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not using the flexibility of ordering at any time even if we are going to order at most once; 17.7%

when x = 250 and K = 0 in Table 15. Similar deductions can be made when comparing other

cases. Of course, as x gets smaller, we see the effect of delaying the order diminishing.

K
x

0 100 250

0 17.6 22.0 32.0
1000 7.7 10.6 18.4
5000 4.5 7.4 15.5

Table 14: Percentage difference 100× T/1/Z−D/∞/F
D/∞/F for different initial inventory x and setup cost K values.

Base case parameters are used.

K
x

0 100 250

0 4.9 8.1 17.7
1000 4.8 7.9 17.2
5000 4.5 7.4 15.5

Table 15: Percentage difference 100× T/1/Z−D/1/F
D/1/F for different initial inventory x and setup cost K values.

Base case parameters are used.

Remark 4.4. Considering the joint effect of stopping time, order frequency and delaying the first

order, we conclude that the fixed cost of ordering and the inventory level at time zero play an

important role. If the initial inventory is large (in our numerical experiments, we take the largest x

value to be the half of the expected total horizon demand), then the management is advised to search

for the feasibility of implementing a stopping time, as well as delaying the first order. However, if

initial inventory level is small, then it is important to consider the possibility of implementing a

stopping time and the multiple order option concurrently.

4.2 Sensitivity Analysis and Managerial Insights

In this subsection, we analyze the performance of our proposed model in detail. We consider

pairwise comparisons of expected discounted total cost given different levels of a parameter utilized

in the model. We summarize these sensitivities in seven subsections: effect of demand structure,

effect of outside source, effect of time horizon, effect of penalty cost, effect of time discount and

effect of scrapping cost, and finally effect of incorrectly specifying the demand structure.

We only consider limited number settings to demonstrate the sensitivity. We report all these

sensitivities for different K and x values. We end each subsection with a managerial insight sum-

marizing and generalizing the findings. The key approach while generating these insights is not
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necessarily related to the current decision framework only, but to support further decision-making

needed to handle the complete end-of-life management problem as well.

4.2.1 Effect of Demand Structure

Table 16 shows the effect of demand structure on the model D/∞/F by showing the percent

difference when intensity function λ is concave and convex. If both the initial inventory and the

setup cost are low (x = 0,K = 0), then the cost under convex demand is higher. The reason is that

more demand is satisfied earlier when the intensity is convex. Therefore, the costs are discounted

less. On the other hand, if the initial inventory is low yet the setup cost is high (x = 0,K = 5000),

the cost under concave demand is higher, since more setup might be needed throughout the horizon

under concave demand, as the decline rate of demand is lower. If we start with a very large initial

inventory (x = 400) implying that we may not need much ordering, then holding cost component

dominates and hence we have a much higher cost for the concave case as inventory is depleted much

slower.

Table 17 shows the results when T = 100. The trend is similar to what is said for T = 50.

However, as the horizon is longer and total expected demand is the same for both time horizons,

the expected drop in on-hand inventory for the convex case relative to concave is less, and hence

percent differences for large x values are not as large as the case T = 50.

Insight 1: If we have either high initial inventory level x or high setup cost K, it might be wise to

encourage (even give incentives to) customers to come earlier – hence make the demand rate look

like convex compared to the original one. On the other hand, with small x and K combinations

(northwest part of Table 16), we may look for strategies making customers come later.

K
x

0 100 250 300 400

0 -5.1 -5.5 -0.5 4.3 27.7
1000 -1.5 -2.9 -0.3 3.1 21.0
5000 4.5 0.8 0.0 1.7 5.7

Table 16: Percentage difference 100 × (VConcave − VConvex) / VConvex: Comparison of Ṽ (0, x) + A when
demand is convex and concave (see Table 5 for definitions). The relevant parameters are T = 50, c2 = 2c̄, γ =
0.01, c4 = c/4, δ = 0.005.
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K
x

0 100 250 300 400

0 -11.8 -12.8 -3.1 5.7 39.6
1000 -11.1 -14.4 -11.2 -5.6 28.1
5000 -11.3 -17.6 -22.4 -15.8 27.0

Table 17: Percentage difference 100 × (VConcave − VConvex) / VConvex: Comparison of Ṽ (0, x) + A when
demand is convex and concave (see Table 5 for definitions). The relevant parameters are T = 100, c2 =
2c̄, γ = 0.01, c4 = c/4, δ = 0.005.

4.2.2 Effect of Outside Source / Alternative Policy

The percentages in Table 18 show the effect of an outside/alternative source by presenting

Ṽ (0, x) + A with a decreasing cost of this source (γ = 0.01) versus and a nearly constant cost

(γ = 10−6) over time (time discount is fixed to δ = 0.005). The benefit of a decreasing unit cost of

the outside source is observed, as the case where the cost is constant over the horizon yield higher

total expected cost for every x and K.

When x = 0,K = 0, the manufacturer may not use the alternative policy at all since the cost of

procurement can be sufficiently low. When x = 0 and K = 5000 however, the manufacturer would

prefer placing a large order at time zero, and then using the alternative policy if needed. Hence,

as K increases, the value of having a decreasing unit cost in the alternative policy also increases.

When x is in the region (350, 450) for any K, it is likely that the manufacturer utilizes initial

inventory and then switches to alternative policy, instead of placing an order. Hence, given the

cost structure of the alternative policy, one can observe the highest percent values in the expected

total cost differential in this region of x.

When x = 550 or higher, the manufacturer may not use the alternative policy at all until the

stopping time, since the initial inventory seems sufficiently high to cover the demand. Note that,

for x = 550, it is likely that the optimal stopping time is realized closer to T . Therefore, any change

in the unit cost of alternative policy over time has practically no impact on the expected total cost.

Of course, as x goes higher (which might not be very reasonable for the problem structure), we

see that the optimal solution may prefer stopping before the end of the horizon (almost at the

same time for all K values) and starting to use the alternative source for the remaining part of

the horizon. The fact that percentages are higher simply reflect the unit cost difference in the

alternative policy in the cases compared.

Insight 2: It is shown in other parts of the study that the existence of an alternative policy (or an
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outside source) can be essential for flexibility needed in the environment. Hence, the cost of this

alternative becomes critical in the effectiveness of the approach. Thus, larger percentages in Table

18 demonstrate the fact that it may be better to support the development of an alternative source

so that it will become more cost-efficient (cheaper) over time. This might be realized by giving

incentives to other parties for developing technologies to lower the manufacturing price.

K
x

0 100 250 350 450 550 700

0 1 1 1 2 3 0 5
1000 4 5 7 11 15 0 5
5000 8 11 12 26 30 0 5

Table 18: Percentage difference 100×(Vγ=10−6−Vγ=0.01)/Vγ=0.01: Comparison of Ṽ (0, x)+A when γ = 10−6

and γ = 0.01 to show the effect of alternative policy. The relevant parameters are T = 100, c2 = 2c̄, c4 =
c̄/4, δ = 0.005, convex intensity.

4.2.3 Effect of Time Horizon

Table 19 shows the effect of time horizon T by presenting Ṽ (0, x)+A when T = 50 and T = 100.

When x = 0,K = 0, the expected total cost under T = 100 is lower, since the manufacturer places

small orders later in time, utilizing time-discount. On the other hand, when x = 0,K = 5000, a

sufficiently large order is placed at time zero. Since this purchasing cost occurs at time zero in both

cases, the costs are similar.

For a relatively small range for x (300-330) (for instance, when x = 331) and large K, the

manufacturer does not place an order and uses the alternative policy. If T = 50, then this policy is

used earlier at a time when the unit cost of the alternative policy is relatively higher and discount

has less effect. This results in a 13% difference in relative total expected costs. On the other hand,

for x = 331,K = 0, the manufacturer can place small orders instead of using the alternative policy

or facing penalty. This explains a very small percentage difference observed. When x is larger

than the range given above, for smaller K values, we start to observe the negative effects of longer

horizon, as longer horizon brings more carrying cost over time and hence greater expected costs for

the case with T = 100.

Insight 3: The selection of time horizon which is equivalent to setting a warranty period is not

considered in the current work. On the other hand, extending the warranty period will always

be preferable by customers. Hence if one observes benefits of extending, it might be potentially

a beneficial managerial move. If there are moderate to high setup cost K values, and relatively
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low initial inventory x values (south middle east part of Table 19) it might be wiser to extend the

horizon to T = 100 under the knowledge that demand will be flatter through 100 periods.

K
x

0 100 250 331 400 435

0 7 8 7 1 -12 -24
1000 3 5 6 3 -6 -14
5000 1 4 6 13 15 -1

Table 19: Percentage difference 100×(VT=50−VT=100)/VT=100: Comparison of Ṽ (0, x)+A when T = 50 and
T = 100 to show the effect of time horizon. The relevant parameters are c2 = 2c̄, c4 = c̄/4, γ = 0.01, δ = 0.005,
convex intensity.

4.2.4 Effect of Penalty Cost

Table 20 and Table 21 show the effect of penalty c̄2 by presenting Ṽ (0, x) + A when c̄2 = 2c̄

and c̄2 = 10c̄. Note that for x values which are in between 0 and the expected total demand (for

instance x = 300), the change in unit penalty cost is expected to have its highest impact, since the

firm takes the risk of penalty for not placing an order. Nevertheless, even if we change penalty cost

by a factor of 5, the increase in the optimal value of the expected total discounted cost is negligible

(less than 2% in all cases). The reason is that the manufacturer can stop holding inventory and

use the alternative policy to avoid penalty cost.

Insight 4: As we have an existing alternative (which is much cheaper than the larger penalty cost

in Table 4), practically there is no significant difference observed after changing the penalty cost.

Hence, with the existence of such an alternative, the firm might announce to pay large penalties

for not satisfying demand to attract more demand to begin with. This shows the importance of

creating such an alternative. Additionally, if the cost of alternative decreases over time (periods

where the risk of paying the penalty is more), then it will be even better for decreasing expected

costs.

K
x

0 100 250 300

0 0.4 0.5 0.7 0.8
1000 0.5 0.7 0.9 1.1
5000 0.6 0.8 1.0 1.8

Table 20: Percentage difference 100× (Vc̄2=10c̄ − Vc̄2=2c̄)/Vc̄2=2c̄: Comparison of Ṽ (0, x) + A when c̄2 = 2c̄
and c̄2 = 10c̄. The relevant parameters are T = 100, c4 = c̄/4, γ = 0.01, δ = 0.005, convex intensity.
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0 100 250 600

0 0.4 0.5 0.6 0.0
1000 0.4 0.5 0.7 0.0
5000 0.3 0.6 0.7 0.0

Table 21: Percentage difference 100× (Vc̄2=10c̄ − Vc̄2=2c̄)/Vc̄2=2c̄: Comparison of Ṽ (0, x) + A when c̄2 = 2c̄
and c̄2 = 10c̄. The relevant parameters are T = 100, c4 = c̄/4, γ = 10−6, δ = 0.005, convex intensity.

4.2.5 Effect of Time Discount

Table 22 shows the effect of time discount δ by presenting Ṽ (0, x) + A when δ = 0.005 and

δ = 10−6. The expected total cost is always higher when time discount is close to zero, as can

be predicted. The effect of discount decreases in K, for smaller x values, since a large order is

placed at time zero rather than later on. However, for intermediate x values (350-450) the effect

is reversed or disappears, since it is likely that an order is needed later in the horizon; hence, the

value of K becomes critical.

Insight 5: Time discount shows the sensitivity of results on the total discounted expected cost for

varying horizon lengths. In the numerical experiments, the time discount value seems to be effective

for different x values rather than K; and hence reiterating the importance of initial inventory. This

length will be different for industries, and hence the essential insight will be a function of the

industry considered.

K
x

0 100 250 350 450

0 11 13 18 20 17
1000 8 11 15 19 18
5000 6 8 14 21 18

Table 22: Percentage difference 100 × (Vδ=10−6 − Vδ=0.005)/Vδ=0.005: Comparison of Ṽ (0, x) + A when
δ = 0.005 and δ = 10−6. The relevant parameters are T = 100, c2 = 2c̄, c4 = c̄/4, γ = 0.01, convex intensity.

4.2.6 Effect of Scrapping Cost

Table 23 shows the impact of scrapping cost c4 by presenting Ṽ (0, x) + A when c4 = c̄/4 and

c4 = −c̄/4. If x < 450, then it is most likely that the inventory is used to satisfy the demand;

therefore, we may not need to scrap inventory. In this region of x, we stop holding inventory only

if the inventory level is about to hit zero and the risk of penalty arises. In such a case, only a

negligible amount of inventory is scrapped, implying that the scrapping cost has a negligible effect

on the expected total cost. On the other hand, if x > 450, then the excess inventory may need to

be scrapped. Therefore, the scrapping cost can have an impact on the expected total cost.
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K
x

0 100 250 450 500 550

0 0.0 0.0 0.0 0.1 2.8 15.1
1000 0.1 0.1 0.1 0.2 2.8 15.1
5000 0.1 0.1 0.1 0.2 2.8 15.1

Table 23: Percentage difference 100 × (Vc4=c̄/4 − Vc4=−c̄/4)/Vc4=−c̄/4: Comparison of Ṽ (0, x) + A when
c4 = c̄/4 and c4 = −c̄/4. The relevant parameters are T = 100, c2 = 2c̄, γ = 0.01, δ = 0.005, convex
intensity.

Insight 6: Scrapping inventory is not a significant burden (or source of income) when the manufac-

turer wishes to start using outside source rather than holding inventory, unless the initial inventory

level is excessively large. So, this parameter seems to be less effective for decision-making purposes.

4.2.7 Expected Penalty of a Misspecified Intensity Function

We analyze the impact of an error in selecting the intensity function of the non-homogeneous

Poisson process (Nt)t∈[0,T ]. Suppose that the manufacturer chooses a linear intensity function, but

the true intensity function is convex (recall Table 5 for definitions). To calculate the cost of making

such assumption, we first solve Ṽ (0, x) +A when the intensity function is convex and linear to find

the best decision variables (ordering, stopping, continuation regions and order-up-to levels). Next,

with those fixed decision variables, we compute the objective function Ṽ (0, x) + A when intensity

is convex.

Table 24 shows the percent difference in expected total cost. If x = 0,K = 0 and intensity is

linearly decreasing, then the manufacturer places small orders more frequently. On the other hand,

if the intensity is decreasing in a convex manner, then the manufacturer tends to place larger orders

at the beginning and smaller orders towards the end. Hence, by presuming a linearly decreasing

intensity function and taking actions based on this assumption, the manufacturer can observe excess

penalty cost at the beginning and excess holding cost towards the end, resulting in a significant

loss (above 30%). We believe that this is a motivation to study a problem where intensity rate is

random itself. Also note that for other x and K combinations, the loss can be as high as 116%.

The largest percent loss can be observed when there is an initial inventory level which is close to

the expected demand throughout the horizon. For instance when x = 450, it is likely that we wait

for an amount of time and then place an order. If intensity is linearly decreasing, then this future

order can be large. Hence, if the manufacturer places a large order in the future, then it is most

likely that excess holding and procurement costs incur as the arrival rate under decreasing-convex
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case is much lower towards the end of horizon.

When x is large (above expected demand), one may be less willing to stop towards the end

under the presumption that the intensity rate is decreasing linearly. Hence, this difference in the

stopping region create small, but meaningful percent difference in expected total costs indicating

the importance of the stopping time.

Insight 7: One of the critical inputs to the end-of-life management problem is the estimation of

the demand rate over the time horizon. The results presented in Table 24 indicate that the penalty

of this misspecification can be drastic, especially if the fixed ordering cost is large. Hence an initial

study to analyze underlying demand structure seems to be a reasonable way for management to

use her resources. Similarly, an agreement with the consumers on the possible timing of demand

arrivals may further help in quantifying the demand intensity over time, decreasing the risk of

misspecification.

0 100 250 450 550 650

0 36 22 6 10 0 3
1000 11 14 16 85 1 3
5000 29 5 36 116 0 3

Table 24: Percentage difference 100 × (Vlinear−decvar − Vconvex−decvar) / Vconvex−decvar: The cost

Vlinear−decvar denotes the expected total cost of Ṽ (0, x)+A calculated with convex intensity, but the best de-

cision variables are found with linear intensity. VConvex−decvar denotes the expected total cost of Ṽ (0, x)+A
with convex intensity. The relevant parameters are T = 50, c2 = 2c̄, γ = 0.01, c4 = c/4, δ = 0.005.

5 Conclusions with Practical Implications and Possible Exten-

sions

This study analyzes the value of providing flexibility in the end-of-life management problem.

Namely, we allow for multiple orders as well as a change in the timing of the first order, and we

utilize stopping times to decide on when to dispose all the available inventory. To that end, we

consider a manufacturer whose problem is to make one of the three decisions at each period: (1)

place an order for spare parts, (2) do nothing and use existing inventory to satisfy demand, or (3)

stop holding inventory permanently and use an outside/alternative source. We cast this problem

as an optimal stopping problem with additional decisions so that it can be solved by means of

stochastic dynamic programming. After providing the dynamic programming formulation, we use

martingale theory to facilitate the calculation of the value function. We devise a taxonomy for
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benchmark models to show the value of our approach as well as compare our results with the

current literature. Several analytical results are presented to further enhance our understanding of

the problem. Finally, we present computational results, generating several managerial insights.

The originality of the study comes from the fact that several dimensions of the end-of-life

problem are considered. The first dimension is related to the decision-making environment. We

consider possible decisions which give us the benefit of using all flexibilities. Remarks 4.1 through 4.4

summarize when and how to exploit these flexibilities. Accordingly, approaches with the premise

that a final order must be placed at time zero can be a strong assumption leading to losses.

Moreover, the dynamic selection of the time to stop (via a stopping time) and additionally allowing

for multiple orders can be valuable.

A second dimension is related to the practicalities during the implementation phase of these

policies. Note that the problem of managing end-of-life is more than supplying spare parts inventory,

especially if the horizon is long. Hence, operationally, additional information we obtain during the

horizon can be used more effectively to manage the decisions within the horizon. More precisely,

one can compute several properties regarding the stopping time, as depicted in Subsection 3.3.

The information gathered would allow proactive agreements with the outside source, as well as

some operational support in the later phases of the end-of-life. The manufacturer can share the

information on the time of transition with the outside source. The information can be based on

some assumptions (such as no further order will be given, as in Subsections 3.3.1 and 3.3.2) or can

be in the form of exact distribution (Subsection 3.3.3). Although not presented here, using the

analysis carried out in Appendix E (distribution of stopping times), one can come up with various

additional information to further support decision-making in all, but especially the later stages of

the horizon. Two straightforward examples are as follows: (1) One can compute the probability

that an order is not placed in the next n periods. For instance, the manufacturer can use this

probability for the following decision: if the probability is greater than a threshold, then it might

be beneficial not to review inventory for some number of periods, avoiding review costs. Note that

the review cost component affects the selection of the time between two consecutive periods. (2)

For a fixed initial inventory level, the expected number of periods before placing the first order can

be calculated. This information will likely be utilized by the manufacturing function for planning

the production of this lot in advance.
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A final dimension we consider is regarding the setting of the parameters, which is likely to affect

the problem outcome significantly. In Subsection 4.2, seven managerial insights are proposed. The

insights are mainly towards controlling the environment of the end-of-life management problem.

They are related to affecting the customer arrival rates, making monetary arrangements to support

development of the alternative source, extending the warranty period, and announcing favorable

parameter values to attract more customers so that demand rates increase, making the expected

profits of the end-of-life period even more attractive for the manufacturing firm.

There are a few straightforward extensions that can follow: use of time-varying unit procurement

cost, use of time-varying fixed ordering cost, use of unequal review periods, and use of costs to review

inventory. Except the last one, the current dynamic programming formulation can be adjusted.

For the case with review costs, state space-reducing properties can be studied. Finally, observing

Insight 7, which is related to the significant cost of misspecification of the demand intensity function,

the case with random intensity might be a reasonable future direction for research.

A Auxiliary Results

This subsection provides auxiliary results for the other proofs. Recall that (Ω,H,P) denotes

the underlying probability space which hosts the non-homogeneous Poisson process N . Let F =

(Ft)t∈[0,T ] denote the filtration generated by N , that is, Ft := σ(Ns, s ∈ [0, t]) for every t ∈ [0, T ].

Lemma A.1 below introduces the martingale property for N and it helps us convert Poisson integrals

into Lebesgue integrals.

Lemma A.1. (Çınlar 2011, p. 299, VI.6.4) Let (Ht)t∈[0,T ] be a non-negative F-predictable process

such that E
[∫ t

0 Huλ(u)du
]
<∞ for every t ∈ [0, T ]. Then, the process (Lt)t∈[0,T ] defined by

Lt :=

∫ t

0
Hu dNu −

∫ t

0
Huλ(u) du, t ∈ [0, T ],

is a martingale with respect to F. Moreover, for each F-stopping time τ ∈ T ,

E
[∫ τ

0
Hu dNu

]
= E

[∫ τ

0
Huλ(u) du

]
.

The next lemma is helpful while converting the expected cost terms into new forms that can be

calculated numerically.

Lemma A.2. For every x ∈ Z+ and k ∈ T,

E[(x−Nk)
+] =

x−1∑
n=0

P {Nk ≤ n} ,
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where the sum is defined to be 0 when x = 0.

Proof. Note that E[(x−Nk)
+]−E[(x−1−Nk)

+] = P {Nk ≤ x− 1}. Iterating this equality yields

that E[(x − Nk)
+] = E[(x − 1 − Nk)

+] + P {Nk ≤ x− 1} = E[(x − 2 − Nk)
+] + P {Nk ≤ x− 2} +

P {Nk ≤ x− 1} = · · · =
∑x−1

n=0 P {Nk ≤ n} .

Recall that σkx = inf{u > k : Nu −Nk ≥ x} and σx = σ0
x. The following lemma shows that the

stopping time σx is conditionally independent from the past given the present. This enables us to

write dynamic programming algorithms when the objective function includes σx. For an F-stopping

time τ , we define the stopped σ-algebra Fτ := {E ∈ H : E ∩ {τ ≤ t} ∈ Ft for each t ∈ [0, T ]}.

Lemma A.3. For every F-stopping time τ ∈ T and x ∈ Z+, on {τ < σx},

σx = στx−Nτ + τ,

where στx−Nτ = inf{t > 0 : Nt+τ − Nτ ≥ x − Nτ}. Moreover, στx−Nτ and Fτ are conditionally

independent given Nτ .

Proof. On the set {τ < σx}, we see that Nτ < x. Then, on {τ < σx}, we have

σx = inf{t > 0 : Nt ≥ x} = inf{t > τ : Nt ≥ x}

= inf{u > 0 : Nu+τ −Nτ +Nτ ≥ x}+ τ = στx−Nτ + τ.

For the second claim, we know from the strong Markov property of non-homogeneous Poisson

processes (Çınlar 2011, p. 296, VI.5.18) that Nu+τ and Fτ are conditionally independent given Nτ

for any u > 0. Hence, by definition, στx−Nτ and Fτ are conditionally independent given Nτ .

B Proofs of the Results in Section 2

Proof of Lemma 2.1. Clearly, H(k, 0) = 0. Let x ≥ 1. Then,

H(k, x) =c1E
[∫ k+1

k
e−δ(u−k)

(
x− (Nu −Nk)

)+
du

]
=c1

∫ k+1

k
e−δ(u−k)E

[(
x− (Nu −Nk)

)+]
du (Fubini’s Theorem)

=c1

∫ k+1

k
e−δ(u−k)

x−1∑
n=0

P {Nu −Nk ≤ n} du (Lemma A.2)

=c1

x−1∑
n=0

∫ k+1

k
e−δ(u−k)P {Nu −Nk ≤ n} du
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=c1

x−1∑
n=0

n∑
i=0

∫ k+1

k
e−δ(u−k)P {Nu −Nk = i} du

=c1

x−1∑
n=0

n∑
i=0

∫ k+1

k
e−δ(u−k)e−(Λ(u)−Λ(k)) (Λ(u)− Λ(k))i

i!
du,

where Λ(u)− Λ(k) =
∫ u
k λ(s)ds.

Proof of Lemma 2.2. We first note that L(k, x) can be expressed as

L(k, x) = E
[∫ k+1

k
e−δ(u−k)c2(u)dNu

]
− E

[∫ (k+1)∧σx

k
e−δ(u−k)c2(u)dNu

]
.

It follows from Lemma A.1 that

E
[∫ k+1

k
e−δ(u−k)c2(u) dNu

]
=

∫ k+1

k
e−δ(u−k)c2(u)λ(u) du.

Moreover, we have

E

[∫ (k+1)∧σkx

k
e−δ(u−k)c2(u) dNu

]

=E

[∫ (k+1)∧σkx

k
e−δ(u−k)c2(u)λ(u) du

]
(Lemma A.1)

=

∫ k+1

k
E
[
1{u<σkx}

]
e−δ(u−k)c2(u)λ(u) du (Fubini’s Theorem)

=

∫ k+1

k
P {Nu −Nk ≤ x} e−δ(u−k)c2(u)λ(u) du (Definition of σkx)

=
x∑
i=0

∫ k+1

k
e−δ(u−k)c2(u)λ(u)e−(Λ(u)−Λ(k)) (Λ(u)− Λ(k))i

i!
du.

Hence, the result of the lemma follows.

C Proof of the Results in Subsection 3.1

Proof of Proposition 3.1. Note that for every t ∈ T and every xt ∈ Z+, we can write

e−δtS(t, xt) =e−δtc4xt + e−δtE
[∫ T

t
e−δ(u−t)c3(u)dNu

]
=e−δtc4xt + E

[∫ T

t
e−δuc3(u)dNu

]
=e−δtc4xt + E

[∫ T

0
e−δuc3(u)dNu

]
− E

[∫ t

0
e−δuc3(u)dNu

]
=e−δtc4xt + E

[∫ T

0
e−δuc3(u)dNu

]
−

t−1∑
k=0

e−δkE
[∫ k+1

k
e−δ(u−k)c3(u)dNu

]

=e−δtc4xt +A−
t−1∑
k=0

e−δkE
[∫ k+1

k
e−δ(u−k)c3(u)dNu

]
.
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Moreover, for every t ∈ T and every x0, x1, . . . , xt−1 ∈ Z+, we can write
t−1∑
k=0

e−δkL(k, xk) =

t−1∑
k=0

e−δkE

[∫ k+1

(k+1)∧σkxk

e−δ(u−k)c2(u)dNu

]

=
t−1∑
k=0

e−δk

(
E
[∫ k+1

k
e−δ(u−k)c2(u)dNu

]
− E

[∫ (k+1)∧σkxk

k
e−δ(u−k)c2(u)dNu

])
.

Then, for every t ∈ T and every x0, x1, . . . , xt ∈ Z+, we have
t−1∑
k=0

e−δkC(k, xk) + e−δtS(t, xt)

=
t−1∑
k=0

e−δk (H(k, xk) + L(k, xk)) + e−δtS(t, xt)

=

t−1∑
k=0

e−δkc1E
[∫ k+1

k
e−δ(u−k)(xk − (Nu −Nk))

+du

]

+
t−1∑
k=0

e−δk

(
E
[∫ k+1

k
e−δ(u−k)c2(u)dNu

]
− E

[∫ (k+1)∧σkxk

k
e−δ(u−k)c2(u)dNu

])

+ e−δtc4xt +A−
t−1∑
k=0

e−δkE
[∫ k+1

k
e−δ(u−k)c3(u)dNu

]

=

t−1∑
k=0

e−δkc1E
[∫ k+1

k
e−δ(u−k)(xk − (Nu −Nk))

+du

]

+
t−1∑
k=0

e−δk

(
E
[∫ k+1

k
e−δ(u−k)[c2(u)− c3(u)]dNu

]
− E

[∫ (k+1)∧σkxk

k
e−δ(u−k)c2(u)dNu

])

+ e−δtc4xt +A

=

t−1∑
k=0

e−δkC̃(k, xk) + e−δtS̃(xt) +A.

Therefore, for every π ∈ Π, we have

E

[
τ−1∑
k=0

e−δk
(
c(µk(Xk)) + C(k,Xk + µk(Xk))

)
+ e−δτS(τ,Xτ )

∣∣∣∣∣X0 = x

]

= E

[
τ−1∑
k=0

e−δk
(
c(µk(Xk)) + C̃(k,Xk + µk(Xk))

)
+ e−δτ S̃(Xτ )

∣∣∣∣∣X0 = x

]
+A.

After taking infimum over all π ∈ Π, we conclude the proof.

Proof of Proposition 3.3. Let k ∈ T and x ∈ Z+. If x = 0, then σkx = k and (x− (Nu −Nk))
+ =

0 for every u > k. Therefore, we apply Lemma A.1 to the definition of C̃(k, x) in (3.1) to get

C̃(k, 0) = E
[∫ k+1

k
e−δ(u−k) [c2(u)− c3(u)] dNu

]
=

∫ k+1

k
e−δ(u−k) [c2(u)− c3(u)]λ(u) du.
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Next, if x ≥ 1, then from Lemma 2.1, we have

E
[∫ k+1

k
e−δ(u−k) (x− (Nu −Nk))

+ du

]
=

x−1∑
n=0

n∑
i=0

∫ k+1

k
e−δ(u−k)e−(Λ(u)−Λ(k)) (Λ(u)− Λ(k))i

i!
du.

Moreover, from Lemma A.1, we have

E
[∫ k+1

k
e−δ(u−k) [c2(u)− c3(u)] dNu

]
=

∫ k+1

k
e−δ(u−k)[c2(u)− c3(u)]λ(u) du.

Finally, by proceeding as in the proof of Lemma 2.2, it is possible to show that

E

[∫ (k+1)∧σkx

k
e−δ(u−k)c2(u) dNu

]
=

x∑
i=0

∫ k+1

k
e−δ(u−k)c2(u)λ(u)e−Λ(u)−Λ(k) (Λ(u)− Λ(k))i

i!
du.

Combining the above terms concludes the proof.

D Proof of the Results in Subsection 3.2

Proof of Proposition 3.4. asd

1. To show the partitioning of T × Z+ into three regions, let an arbitrary time k ∈ T and an

inventory level x ∈ Z+ be given (recall that T = {0, 1, . . . , T}).

Case 1: Assume that S̃(x) ≤ J̃(k, x) = infm∈Z+(c(m) + G̃(k, x + m)). Then x ∈ RSk by definition.

It also holds that S̃(x) ≤ G̃(k, x) because c(0) = 0. Then, x /∈ RCk . Moreover, it holds that

S̃(x) ≤ infm≥1(c(k) + G̃(k, x+m)), so x /∈ ROk .

Case 2: Assume that S̃(x) > J̃(k, x) = infm∈Z+(c(m)+G̃(k, x+m)) and that G̃(k, x) ≤ infm≥1(c(m)+

G̃(k, x + m)). Then, from (3.3), it is possible to see that Ṽ (k, x) = G̃(k, x). Moreover, G̃(k, x) <

S̃(x) due to the assumption of this case. Hence, x ∈ RCk . Next, x /∈ RSk since S̃(x) > G̃(k, x).

Finally, G̃(k, x) ≤ infm≥1(c(m) + G̃(k, x+m)) and therefore x /∈ ROk .

Case 3: Assume that S̃(x) > J̃(k, x) = infm∈Z+(c(m)+G̃(k, x+m)) and that G̃(k, x) > infm≥1(c(m)+

G̃(k, x+m)). Then, infm≥1(c(m) + G̃(k, x+m)) < min{S̃(x), G̃(k, x)} and so x ∈ ROk . Moreover,

from (3.3), it is possible to see that Ṽ (k, x) < G̃(k, x) so x /∈ RCk . Finally, we have x /∈ RSk since

S̃(x) > infm∈Z+(c(m) + G̃(k, x+m)) from the assumption of the case.

2. Let π̃∗ be given as in the proposition. For ease of notation, define for each k ∈ T and x ∈ Z+

the function J̃1(k, x) := infm≥1(c(m) + G̃(k, x + m)). If X π̃∗
k ∈ RSk , then S̃(X π̃∗

k ) ≤ J̃(k,X π̃∗
k ).

Then, we stop due to the definition of τ̃∗ in Corollary 3.2. If X π̃∗
k ∈ ROk , then J̃1(k,X π̃∗

k ) <

min{S̃(X π̃∗
k ), G̃(k,X π̃∗

k )}. Then, from (3.3), we have Ṽ (k,X π̃∗
k ) = J̃1(k,X π̃∗

k ), so it is optimal to

place an order of µ̃∗k ◦X π̃∗
k ≥ 1 where the function µ̃∗k is defined as in Corollary 3.2. Hence, it is op-

timal to increase inventory to the level S∗k ◦X π̃∗
k where S∗k(x) := x+ µ̃∗k(x) for each x ∈ ROk . Finally,
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if X π̃∗
k ∈ RCk , then Ṽ (k,X π̃∗

k ) = G̃(k,X π̃∗
k ), so the decision of not placing an order (µ̃∗k ◦X π̃

k = 0 )

can attain the infimum in the definition of J̃ in (3.4). Moreover, X π̃∗
k /∈ ROk and X π̃∗

k /∈ RSk since

RCk , R
O
k and RSk are disjoint from the first claim of the proposition. Then, it is optimal to continue

without taking an action.

E Distribution of Optimal Stopping Time

In this section, we provide recursive relations to compute the distribution of optimal stopping

time. Recall that π∗, µ∗k τ
∗ and Xπ∗

k respectively denote an optimal policy, optimal order amount,

optimal stopping time, and inventory level. Let us ease the notation and use π, µk, τ and Xk in

this section. Let x0 denote the initial inventory level at time 0. Then, we stop at time m if the

first time that we enter the stopping region is m. Formally,

P {τ = m} = P
{
X1 /∈ RS1 , . . . , Xm−1 /∈ RSm−1, Xm ∈ RSm

∣∣ X0 = x0

}
. (E.1)

where RSk denotes the set of inventory levels that we stop at time k. In this section, we provide a

recursive relation to compute (E.1). Define

P (t, xt) := P
{
Xt+1 /∈ RSt+1, . . . , Xm−1 /∈ RSm−1, Xm ∈ RSm

∣∣ Xt = xt
}
. (E.2)

Then, P {τ = m} = P (0, x0) and we calculate P (0, x0). To that end, let us first state the following

lemma.

Lemma E.1. Let A,B,C,D be non-negligible events such that B ∩ C = ∅. Then,

P(A ∩ (B ∪ C)|D) = P(A ∩B|D) + P(A ∩ C|D).

Proof. B ∩ C = ∅ implies (A ∩B ∩D) ∩ (A ∩ C ∩D) = ∅. Then,

P(A ∩ (B ∪ C)|D) =
1

P(D)
P(A ∩ (B ∪ C) ∩D)

=
1

P(D)
[P(A ∩B ∩D) + P(A ∩ C ∩D)]

=P(A ∩B|D) + P(A ∩ C|D).

The following proposition enables us to calculate P (0, x0).

Proposition E.2. The function P can be expressed recursively by

P (t− 1, x) =
∑
n∈Z+:
x−n∈RCt

P (t, x− n)P {Nt −Nt−1 = n}+
∑
n∈Z+:
x−n∈ROt

P (t, yt)P {Nt −Nt−1 = n}
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with the terminal condition P (m,xm) = 1 if xm ∈ RSm and P (m,xm) = 0 if xm /∈ RSm. Here, yt

denotes the order-up-to level at time t.

Proof. Let N t−1
t := Nt − Nt−1 be the total demand during one period. The following equation

relates the inventory levels between t− 1 and t:

Xt =


Xt−1 −N t−1

t , if Xt−1 −N t−1
t ∈ RCt ∪RSt ,

yt, if Xt−1 −N t−1
t ∈ ROt .

That is, the inventory at t is equal to inventory at t − 1 minus the demand, if we stay in the

continuation or stopping region; and the inventory at t is equal to the order-up-to level if we enter

the ordering region. Then, since yt /∈ RSt , the following relations hold:

Xt−1 − (Nt −Nt−1) /∈ RSt ⇐⇒ Xt /∈ RSt , (E.3)

Xt−1 −N t−1
t ∈ RCt =⇒ Xt ∈ RCt , (E.4)

Xt−1 −N t−1
t ∈ ROt =⇒ Xt = yt. (E.5)

Next, let us combine the events that occur after t since they will be fixed throughout the proof:

E :=
{
Xt+1 /∈ RSt+1, . . . , Xm−1 /∈ RSm−1, Xm ∈ RSm

}
.

Then,

P (t− 1, x) =P
{
Xt /∈ RSt , . . . , Xm−1 /∈ RSm−1, Xm ∈ RSm

∣∣ Xt−1 = x
}

=P
(
E ∩

{
Xt /∈ RSt

} ∣∣ Xt−1 = x
)

=P
(
E ∩

{
Xt−1 −N t−1

t /∈ RSt
} ∣∣ Xt−1 = x

)
(Relation (E.3))

=P
(
E ∩

{
x−N t−1

t /∈ RSt
} ∣∣ Xt−1 = x

)
=P
(
E ∩

({
x−N t−1

t ∈ ROt
}
∪
{
x−N t−1

t ∈ RCt
}) ∣∣ Xt−1 = x

)
(Since RSt , R

O
t , R

C
t are disjoint)

Moreover, notice that the sets
{
x−N t−1

t ∈ RCt
}

and
{
x−N t−1

t ∈ ROt
}

are disjoint since{
x−N t−1

t ∈ RCt
}
∩
{
x−N t−1

t ∈ ROt
}

=
{
x−N t−1

t ∈ RCt ∩ROt
}

=
{
x−N t−1

t ∈ ∅
}

= ∅,

as RCt and ROt are disjoint. Therefore, after applying Lemma E.1, we get

P (t− 1, x) =P
(
E ∩

({
x−N t−1

t ∈ RCt
}
∪
{
x−N t−1

t ∈ ROt
}) ∣∣ Xt−1 = x

)
=P
(
E ∩

{
x−N t−1

t ∈ RCt
} ∣∣ Xt−1 = x

)
+ P

(
E ∩

{
x−N t−1

t ∈ ROt
} ∣∣ Xt−1 = x

)
=

∑
n∈Z+:
x−n∈RCt

P
(
E ∩

{
N t−1
t = n

} ∣∣ Xt−1 = x
)

+
∑
n∈Z+:
x−n∈ROt

P
(
E ∩

{
N t−1
t = n

} ∣∣ Xt−1 = x
)
.
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Moreover, the first summand is

P
(
E ∩

{
N t−1
t = n

} ∣∣ Xt−1 = x
)

=
1

P{Xt−1 = x}
P
(
E ∩

{
N t−1
t = n

}
∩ {Xt−1 = x}

)
=

1

P{Xt−1 = x}
P
(
E ∩

{
N t−1
t = n

}
∩ {Xt−1 = x} ∩ {Xt = x− n}

)
(By relation (E.4) and x− n ∈ RCt )

=
1

P{Xt−1 = x}
P
(
E|N t−1

t = n,Xt−1 = x,Xt = x− n
)
P
{
N t−1
t = n,Xt−1 = x,Xt = x− n

}
=

1

P{Xt−1 = x}
P (E|Xt = x− n)P

{
N t−1
t = n,Xt−1 = x,Xt = x− n

}
(Markov property of Xt)

=
1

P{Xt−1 = x}
P (E|Xt = x− n)P

{
N t−1
t = n,Xt−1 = x

}
(Relation (E.4))

=
1

P{Xt−1 = x}
P (E|Xt = x− n)P

(
N t−1
t = n

)
P (Xt−1 = x) (N t−1

t and Xt−1 are independent)

= P(E|Xt = x− n)P{N t−1
t = n}

= P (t, x− n)P{N t−1
t = n} (Definition of P ).

Furthermore, by the applying same steps, we can express the other summand as

P
(
E ∩

{
N t−1
t = n

} ∣∣ Xt−1 = x
)

=
1

P{Xt−1 = x}
P
(
E ∩

{
N t−1
t = n

}
∩ {Xt−1 = x} ∩ {Xt = yt}

)
(Since x− n ∈ ROt and relation (E.5))

= P (E|Xt = yt)P
{
N t−1
t = n

}
= P (t, yt)P

{
N t−1
t = n

}
.

Hence, the following equalities hold:

P (t− 1, x) =
∑
n∈Z+:
x−n∈RCt

P
(
E ∩

{
N t−1
t = n

} ∣∣ Xt−1 = x
)

+
∑
n∈Z+:
x−n∈ROt

P
(
E ∩

{
N t−1
t = n

} ∣∣ Xt−1 = x
)

=
∑
n∈Z+:
x−n∈RCt

P (t, x− n)P
{
N t−1
t = n

}
+

∑
n∈Z+:
x−n∈ROt

P (t, yt)P
{
N t−1
t = n

}
.

F Proof of Results in Subsubsection 3.3.1

In this section, we prove Proposition 3.5 and Proposition 3.6. For the brevity of notation, we

take derivative of integrals when the functions are right-continuous. To ensure the existence, it is

possible to take right-derivative and obtain the same expressions. We characterize an upper bound

τub and a lower bound τ lb by stating, respectively, that ∂C(x,τ)
∂τ ≥ 0 for every τ ≥ τub and ∂C(x,τ)

∂τ ≤ 0
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for every τ ≤ τ lb. Lemma F.1 shows a condition which makes the first derivative of C(x, τ) positive.

Lemma F.1. Let x ∈ Z+ and τ ∈ [0, T ]. If

P(Nτ ≥ x)c̃2(τ) ≥ P(Nτ ≤ x− 1)[c3(τ) + c4],

then ∂C(x,τ)
∂τ ≥ 0.

Proof. By proceeding as in Frenk et al. (2019a), we can express C(x, τ) as

C(x, τ) =c4x+ E
(∫ τ

0
e−δuλ(u)[−c4 − c2(u)]P {Nu ≤ x− 1} du

)
+

∫ τ

0
e−δuλ(u)c̃2(u)du

+ (c1 − δc4)

∫ τ

0
e−δuE[(x−Nu)+]du+

∫ T

0
e−δuc3(u)λ(u)du.

Therefore, taking derivative with respect to τ yields

∂C(x, τ)

∂τ

= e−δτλ(τ)[−c4 − c2(τ)]P {Nτ ≤ x− 1}+ e−δτλ(τ)c̃2(τ) + e−δτ (c1 − δc4)E[(x−Nτ )+]

= e−δτλ(τ)[−c4 − c3(τ)− c̃2(τ)]P {Nτ ≤ x− 1}+ e−δτλ(τ)c̃2(τ) + e−δτ (c1 − δc4)
x−1∑
k=0

P {Nτ ≤ k}

= e−δτλ(τ)[−c4 − c3(τ)]P {Nτ ≤ x− 1}+ e−δτλ(τ)c̃2(τ)P {Nτ ≥ x}+ e−δτ (c1 − δc4)
x−1∑
k=0

P {Nτ ≤ k}

= e−δτλ(τ)
(
P {Nτ ≥ x} c̃2(τ)− P {Nτ ≤ x− 1} [c3(τ) + c4]

)
+ e−δτ (c1 − δc4)

x−1∑
k=0

P {Nτ ≤ k} ,

where the second equality uses Lemma A.2.

Proof of Proposition 3.5. We first note that P {Nτ ≥ x} = 1− P {Nτ ≤ x− 1}, so

P {Nτ ≥ x} c̃2(τ) ≥ P {Nτ ≤ x− 1} [c3(τ) + c4]

⇐⇒ c̃2(τ) ≥ P {Nτ ≤ x− 1} [c3(τ) + c̃2(τ) + c4]

⇐= c̃2(T ) ≥ P {Nτ ≤ x− 1} [c3(τ) + c̃2(τ) + c4],

where last implication is due to c̃2(.) being non-increasing. Since τub satisfies inequality (3.8), it

follows from Lemma F.1 that

∂C(x, τ)

∂τ

∣∣∣∣
τ=τub

≥ 0.

Therefore, it suffices to show that for any τ ≥ τub, ∂C(x,τ)
∂τ ≥ 0. To see this, we show that the

function τ 7→ f(τ) := P {Nτ ≤ x− 1} [c2(τ) + c4] is non-increasing. Taking the derivative of f

yields that

∂f(τ)

∂τ
= −λ(τ)P {Nτ = x− 1} [c2(τ) + c4] + P {Nτ ≤ x− 1} c′2(τ).

46



The first term is negative since it is assumed that c2(τ) + c4 ≥ 0 and that λ(τ) ≥ 0. The second

term is negative since c̃2(τ) is non-increasing. Therefore, f is non-increasing.

Lemma F.2. If λ(τ) ≥ 1 and

P {Nτ ≤ x− 1} [c2(τ) + c4] ≥ x(c1 − δc4) + c̃2(0),

then ∂C(x,τ)
∂τ ≤ 0.

Proof. Using the same steps in Lemma F.1 yields

∂C(x, τ)

∂τ
=e−δτλ(τ)c̃2(τ) + e−δτ (c1 − δc4)

x−1∑
k=0

P {Nτ ≤ k} − e−δτλ(τ)[c2(τ) + c4]P {Nτ ≤ x− 1} .

Moreover, it is possible to see that
x−1∑
k=0

P {Nτ ≤ k} ≤ x and c̃2(τ) ≤ c̃2(0) (F.1)

since the function c̃2(.) is non-increasing. Therefore,

∂C(x, τ)

∂τ
≤ 0

⇐⇒ e−δτλ(τ)c̃2(τ) + e−δτ (c1 − δc4)

x−1∑
k=0

P {Nτ ≤ k} ≤ e−δτλ(τ)[c2(τ) + c4]P {Nτ ≤ x− 1}

⇐= λ(τ)c̃2(0) + (c1 − δc4)x ≤ λ(τ)[c2(τ) + c4]P {Nτ ≤ x− 1} (by (F.1))

⇐= λ(τ)c̃2(0) + λ(τ)(c1 − δc4)x ≤ λ(τ)[c2(τ) + c4]P {Nτ ≤ x− 1} (since λ ≥ 1)

⇐⇒ c̃2(0) + (c1 − δc4)x ≤ [c2(τ) + c4]P {Nτ ≤ x− 1} .

Proof of Proposition 3.6. It suffices to show that any τ ∈ [0, τ lb] satisfy the inequality in (3.9),

so that ∂C(x,τ)
∂τ ≤ 0 due to Lemma F.2. To achieve this, we first note that λ is non-increasing,

therefore, any τ ≤ τ lb satisfies λ(τ) ≥ 1. Next, we show that the function

τ 7→ g(τ) := P {Nτ ≤ x− 1} [c2(τ) + c4]

is a non-increasing function. Taking derivative of g yields that

∂g(τ)

∂τ
= −λ(τ)P {Nτ ≤ x− 1} [c2(τ) + c4] + P {Nτ ≤ x− 1} c′2(τ)

The first term is negative due to the assumptions that c2(τ) + c4 ≥ 0 and that λ(τ) ≥ 0. The

second term is negative since both c3 and c̃2 is non-increasing.
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G Proof of Proposition 3.7

In this section, we prove two lemmata and Proposition 3.7. In the sequel, we use the following

forms of C(x, τ), ∆xC(x, τ) := C(x + 1, τ) − C(x, τ) and ∆2
xC(x, τ) := ∆xC(x + 1, τ) − ∆xC(x, τ)

shown by Frenk et al. (2019a) in relations (4)-(6), (14):

C(x, τ) =c4x+ E
(∫ τ

0
e−δuλ(u)[−c4 − c2(u)]P {Nu ≤ x− 1} du

)
+

∫ τ

0
e−δuλ(u)c̃2(u)du

+ (c1 − δc4)

∫ τ

0
e−δuE[(x−Nu)+]du+

∫ T

0
e−δuc3(u)λ(u)du, (G.1)

C(0, τ) =

∫ τ

0
e−δuλ(u)c̃2(u)du+

∫ T

0
e−δuc3(u)λ(u)du, (G.2)

∆xC(x, τ) =c4 +

∫ τ

0
e−δuλ(u)[−c4 − c2(u)]P {Nu = x} du

+ (c1 − δc4)

∫ τ

0
e−δuP {Nu ≤ x} du, (G.3)

∆2
xC(x− 1, τ) =e−δτ

(
c2(τ) + c4

)
P {Nτ = x}+

∫ τ

0
e−δu

[
c1 − c′2(u) + δc2(u)

]
P {Nu = x} du

−
∑

i≤m, li≤τ
e−δli∆c2(li)P {Nli = x} . (G.4)

Lemma G.1, Lemma G.2 and Proposition 3.7 essentially utilize the idea that ∆xC(x, τ) is a

decreasing function of τ and an increasing function of x under the conditions of Proposition 3.7.

Therefore, if τ increases, then S(τ) increases as well since it is the minimum x value satisfying the

first order condition, namely

S(τ) = min {x ∈ Z+ : c̄+ ∆xC(x, τ) ≥ 0} . (G.5)

Lemma G.1. For every ε ∈ [0, T ] and every τ ∈ [0, T ] such that

c1 ≤ λ(τ + ε)c3(τ + ε),

we have ∆xC(0, τ + ε) < ∆xC(0, τ).

Proof. By using the expression for ∆xC(x, τ) in (G.3), we obtain

∆xC(0, τ + ε)−∆xC(0, τ)

=

∫ τ+ε

τ
e−δuλ(u) [−c4 − c2(u)]P {Nu = 0} du(c1 − δc4)

∫ τ+ε

τ
e−δuP {Nu = 0} du

=

∫ τ+ε

τ
e−δuP {Nu = 0}

(
c1 − δc4 + λ(u)[−c4 − c3(u)− c̃2(u)]

)
du

=

∫ τ+ε

τ
e−δuP {Nu = 0}

(
− δc4 + λ(u)[−c4 − c̃2(u)︸ ︷︷ ︸

<0

]
)
du+

∫ τ+ε

τ
e−δuP {Nu = 0}

(
c1 − λ(u)c3(u)︸ ︷︷ ︸

≤0

)
du
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< 0,

where the inequality −c4 − c̃2(u) < 0 holds for every u ∈ [τ, τ + ε] since c4 and c̃2(u) are positive.

Moreover, the inequality c1 − λ(u)c3(u) ≤ 0 holds for every u ∈ [τ, τ + ε] since

c1 ≤ λ(τ + ε)c3(τ + ε) ≤ λ(u)c3(u),

where first inequality is due to the condition of the lemma and the second inequality is because λ

and c3 are non-increasing.

The next lemma is helpful while stating in Proposition 3.7 that if expected total demand exceeds

the order amount and cost rate of outside source does not decline sufficiently, then the order amount

should increase.

Lemma G.2. For every x ∈ Z+, every ε ∈ [0, T ] and every τ2 ∈ [0, T ] such that

(i)x < Λ(τ2), (ii) c1 ≤
[

Λ(u)− x
Λ(u)

]
λ(u)c3(u) for all u ∈ [τ2, τ2 + ε],

we have

∆2
xC(x− 1, τ2 + ε) < ∆2

xC(x− 1, τ2). (G.6)

Proof. For the non-homogeneous Poisson process N with right-continuous intensity function λ,

the right-directional derivative of the function u 7→ ψ(u) = P {Nu = x} exists and it is given by

ψ′(u+) := lim
ε↓0

1

ε
[ψ(u+ ε)− ψ(u)]

=− λ(u)e−Λ(u) Λ(u)x

x!
+ e−Λ(u) Λ(u)x−1

(x− 1)!
λ(u) = −λ(u)P {Nu = x}

[
1− x

Λ(u)

]
.

Moreover, we observe that the function Λ is strictly increasing and

ψ′(u+) < 0 for every u ∈ [0, T ] such that Λ(u) > x. (G.7)

After applying chain rule to the function

τ → e−δτ︸︷︷︸
1

(c2(τ) + c4)︸ ︷︷ ︸
2

P {Nτ = x}︸ ︷︷ ︸
3

in (G.4), we obtain

∆2
xC(x− 1, τ2 + ε)−∆2

xC(x− 1, τ2)

=−
∫ τ2+ε

τ2

δe−δu︸ ︷︷ ︸
1

(
c2(u) + c4

)
P {Nu = x} du

+

∫ τ2+ε

τ2

e−δu c′2(u)︸ ︷︷ ︸
2

P {Nu = x} du+
∑

i≤m, li≤τ
e−δli∆c2(li)P{Nli = x}
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−
∫ τ2+ε

τ2

e−δu
(
c2(u) + c4

)
λ(u)P {Nu = x}

[
1− x

Λ(u)

]
︸ ︷︷ ︸

3

du

+

∫ τ2+ε

τ2

e−δu
[
c1 − c′2(u) + δc2(u)

]
P {Nu = x} du−

∑
i≤m, τ2≤li≤τ2+ε

e−δli∆c2(li)P{Nli = x}.

Notice that all the integrals include the expression e−δuP {Nu = x}. Grouping them gives

∆2
xC(x− 1, τ2 + ε)−∆2

xC(x− 1, τ2)

=

∫ τ2+ε

τ2

e−δuP {Nu = x}

×
[
− δ
(
c2(u)︸ ︷︷ ︸+c4

)
+ c′2(u)︸ ︷︷ ︸−λ(u)

[
1− x

Λ(τ)

]
(c2(u) + c4)

+ c1 − c′2(u)︸ ︷︷ ︸+ δc2(u)︸ ︷︷ ︸)
]
du (underbraced terms cancel each other)

=

∫ τ2+ε

τ2

e−δuP {Nu = x}
[
(c1 − δc4)− λ(u)

[
Λ(u)− x

Λ(u)

]
(c2(u) + c4)

]
du.

Next, after separating the remaining terms, we can see that

∆2
xC(x− 1, τ2 + ε)−∆2

xC(x− 1, τ2)

=

∫ τ2+ε

τ2

e−δuP {Nu = x} (−δc4)du

+

∫ τ2+ε

τ2

e−δuP {Nu = x}
[
− λ(u)︸︷︷︸
≥λ(τ2+ε)

[
Λ(u)− x

Λ(u)

]
c4

]
du (λ is non-increasing)

+

∫ τ2+ε

τ2

e−δuP {Nu = x}

− λ(u)︸︷︷︸
≥λ(τ2+ε)

[
Λ(u)− x

Λ(u)

]
( c̃2(u)︸ ︷︷ ︸
≥c̃2(T )

)

 du (c̃2 is non-increasing)

+

∫ τ2+ε

τ2

e−δu P {Nu = x}︸ ︷︷ ︸
=ψ(u)≥ψ(τ2+ε)

[
c1 − λ(u)

[
Λ(u)− x

Λ(u)

]
c3(u)

]
du

(Relation (G.7) and condition (i))

≤−
∫ τ2+ε

τ2

e−δuP {Nu = x} (δc4)du

− λ(τ2 + ε)c4

∫ τ2+ε

τ2

e−δuP {Nu = x}
[

Λ(u)− x
Λ(u)

]
du

− λ(τ2 + ε)(c̃2(T ))

∫ τ2+ε

τ2

e−δuP {Nu = x}
[

Λ(u)− x
Λ(u)

]
du

+ e−δ(τ2+ε)P {Nτ2+ε = x}
∫ τ2+ε

τ2

[
c1 − λ(u)

[
Λ(u)− x

Λ(u)

]
c3(u)

]
du (G.8)

<0.
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In (G.8), the first and second terms are negative due to the assumption c4 ∈ R+ and condition (i)

of the lemma. The third term is negative since c̃2(T ) ≥ 0 and condition (i) of the lemma. The last

term is negative due to condition (ii) of the lemma. This concludes the proof.

Proof of Proposition 3.7. The function x 7→ C(x, τ) being discrete-convex implies that the func-

tion x 7→ ∆xC(x, τ) is non-decreasing. Moreover, by the definition of S(τ), the first order condition

in equation (G.5) has to be satisfied by S(τ2) and τ2 as well as S(τ2 + ε) and τ2 + ε, meaning that

c̄+ ∆xC(S(τ2), τ2) ≥ 0 and c̄+ ∆xC(S(τ2 + ε), τ2 + ε) ≥ 0.

If we can show that

∆xC(S(τ2), τ2 + ε) < ∆xC(S(τ2), τ2), (G.9)

then S(τ2) ≤ S(τ2 + ε) must hold. To show (G.9), we proceed in three steps. First, condition (iv)

implies that

c1 ≤︸︷︷︸
(iv)

[
Λ(τ2 + ε)− S(τ1)

Λ(τ2 + ε)
λ(τ2 + ε)c3(τ2 + ε)

]
≤ λ(τ2 + ε)c3(τ2 + ε).

By using Lemma G.1, we obtain

∆xC(0, τ2 + ε) < ∆xC(0, τ2).

Next, observe from conditions (iv) and (ii) that for every u ∈ [τ2, τ2 + ε],

c1 ≤︸︷︷︸
(iv)

[
Λ(u)− S(τ1)

Λ(u)

]
λ(u)c3(u) ≤︸︷︷︸

(ii)

[
Λ(u)− S(τ2)

Λ(u)

]
λ(u)c3(u).

By using Lemma G.2, we obtain

∆2
xC(S(τ2)− 1, τ2 + ε) < ∆2

xC(S(τ2)− 1, τ2)

and similarly, for all x ∈ {1, 2, . . . , S(τ2)− 1}, we have

∆2
xC(x− 1, τ2 + ε) < ∆2

xC(x− 1, τ2).

Finally, we obtain

∆xC(S(τ2), τ2 + ε) =∆xC(0, τ2 + ε) +

S(τ2)−1∑
x=0

∆2
xC(x, τ2 + ε)

<∆xC(0, τ2) +

S(τ2)−1∑
x=0

∆2
xC(x, τ2) = ∆xC(S(τ2), τ2).
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H Numbering for the Parameter Settings

This section assigns a number for each parameter setting where the parameters take values in

the sets presented in Table 4. The Table 25 below show the assigned numbers. Also recall that

c̄ = 100, c1 = 0.01c̄ and c̄3 = 2c̄. We present the setup cost K and initial inventory x values

alongside the related result.

# λ T c4 γ δ c̄2 # λ T c4 γ δ c̄2 # λ T c4 γ δ c̄2

1 Conv 50 25 0.01 0.005 200 43 Conc 50 -25 0.01 10−6 200 85 Lin 100 25 10−6 0.005 200
2 Conv 50 25 0.01 0.005 1000 44 Conc 50 -25 0.01 10−6 1000 86 Lin 100 25 10−6 0.005 1000
3 Conv 50 25 0.01 10−6 200 45 Conc 50 -25 10−6 0.005 200 87 Lin 100 25 10−6 10−6 200
4 Conv 50 25 0.01 10−6 1000 46 Conc 50 -25 10−6 0.005 1000 88 Lin 100 25 10−6 10−6 1000
5 Conv 50 25 10−6 0.005 200 47 Conc 50 -25 10−6 10−6 200 89 Lin 100 -25 0.01 0.005 200
6 Conv 50 25 10−6 0.005 1000 48 Conc 50 -25 10−6 10−6 1000 90 Lin 100 -25 0.01 0.005 1000
7 Conv 50 25 10−6 10−6 200 49 Conc 100 25 0.01 0.005 200 91 Lin 100 -25 0.01 10−6 200
8 Conv 50 25 10−6 10−6 1000 50 Conc 100 25 0.01 0.005 1000 92 Lin 100 -25 0.01 10−6 1000
9 Conv 50 -25 0.01 0.005 200 51 Conc 100 25 0.01 10−6 200 93 Lin 100 -25 10−6 0.005 200
10 Conv 50 -25 0.01 0.005 1000 52 Conc 100 25 0.01 10−6 1000 94 Lin 100 -25 10−6 0.005 1000
11 Conv 50 -25 0.01 10−6 200 53 Conc 100 25 10−6 0.005 200 95 Lin 100 -25 10−6 10−6 200
12 Conv 50 -25 0.01 10−6 1000 54 Conc 100 25 10−6 0.005 1000 96 Lin 100 -25 10−6 10−6 1000
13 Conv 50 -25 10−6 0.005 200 55 Conc 100 25 10−6 10−6 200 97 Cons 50 25 0.01 0.005 200
14 Conv 50 -25 10−6 0.005 1000 56 Conc 100 25 10−6 10−6 1000 98 Cons 50 25 0.01 0.005 1000
15 Conv 50 -25 10−6 10−6 200 57 Conc 100 -25 0.01 0.005 200 99 Cons 50 25 0.01 10−6 200
16 Conv 50 -25 10−6 10−6 1000 58 Conc 100 -25 0.01 0.005 1000 100 Cons 50 25 0.01 10−6 1000
17 Conv 100 25 0.01 0.005 200 59 Conc 100 -25 0.01 10−6 200 101 Cons 50 25 10−6 0.005 200
18 Conv 100 25 0.01 0.005 1000 60 Conc 100 -25 0.01 10−6 1000 102 Cons 50 25 10−6 0.005 1000
19 Conv 100 25 0.01 10−6 200 61 Conc 100 -25 10−6 0.005 200 103 Cons 50 25 10−6 10−6 200
20 Conv 100 25 0.01 10−6 1000 62 Conc 100 -25 10−6 0.005 1000 104 Cons 50 25 10−6 10−6 1000
21 Conv 100 25 10−6 0.005 200 63 Conc 100 -25 10−6 10−6 200 105 Cons 50 -25 0.01 0.005 200
22 Conv 100 25 10−6 0.005 1000 64 Conc 100 -25 10−6 10−6 1000 106 Cons 50 -25 0.01 0.005 1000
23 Conv 100 25 10−6 10−6 200 65 Lin 50 25 0.01 0.005 200 107 Cons 50 -25 0.01 10−6 200
24 Conv 100 25 10−6 10−6 1000 66 Lin 50 25 0.01 0.005 1000 108 Cons 50 -25 0.01 10−6 1000
25 Conv 100 -25 0.01 0.005 200 67 Lin 50 25 0.01 10−6 200 109 Cons 50 -25 10−6 0.005 200
26 Conv 100 -25 0.01 0.005 1000 68 Lin 50 25 0.01 10−6 1000 110 Cons 50 -25 10−6 0.005 1000
27 Conv 100 -25 0.01 10−6 200 69 Lin 50 25 10−6 0.005 200 111 Cons 50 -25 10−6 10−6 200
28 Conv 100 -25 0.01 10−6 1000 70 Lin 50 25 10−6 0.005 1000 112 Cons 50 -25 10−6 10−6 1000
29 Conv 100 -25 10−6 0.005 200 71 Lin 50 25 10−6 10−6 200 113 Cons 100 25 0.01 0.005 200
30 Conv 100 -25 10−6 0.005 1000 72 Lin 50 25 10−6 10−6 1000 114 Cons 100 25 0.01 0.005 1000
31 Conv 100 -25 10−6 10−6 200 73 Lin 50 -25 0.01 0.005 200 115 Cons 100 25 0.01 10−6 200
32 Conv 100 -25 10−6 10−6 1000 74 Lin 50 -25 0.01 0.005 1000 116 Cons 100 25 0.01 10−6 1000
33 Conc 50 25 0.01 0.005 200 75 Lin 50 -25 0.01 10−6 200 117 Cons 100 25 10−6 0.005 200
34 Conc 50 25 0.01 0.005 1000 76 Lin 50 -25 0.01 10−6 1000 118 Cons 100 25 10−6 0.005 1000
35 Conc 50 25 0.01 10−6 200 77 Lin 50 -25 10−6 0.005 200 119 Cons 100 25 10−6 10−6 200
36 Conc 50 25 0.01 10−6 1000 78 Lin 50 -25 10−6 0.005 1000 120 Cons 100 25 10−6 10−6 1000
37 Conc 50 25 10−6 0.005 200 79 Lin 50 -25 10−6 10−6 200 121 Cons 100 -25 0.01 0.005 200
38 Conc 50 25 10−6 0.005 1000 80 Lin 50 -25 10−6 10−6 1000 122 Cons 100 -25 0.01 0.005 1000
39 Conc 50 25 10−6 10−6 200 81 Lin 100 25 0.01 0.005 200 123 Cons 100 -25 0.01 10−6 200
40 Conc 50 25 10−6 10−6 1000 82 Lin 100 25 0.01 0.005 1000 124 Cons 100 -25 0.01 10−6 1000
41 Conc 50 -25 0.01 0.005 200 83 Lin 100 25 0.01 10−6 200 125 Cons 100 -25 10−6 0.005 200
42 Conc 50 -25 0.01 0.005 1000 84 Lin 100 25 0.01 10−6 1000 126 Cons 100 -25 10−6 0.005 1000

127 Cons 100 -25 10−6 10−6 200
128 Cons 100 -25 10−6 10−6 1000

Table 25: Numbers for each parameter setting. The columns with the symbol # show the assigned number.
An abbreviation is used when λ is convex (Conv), concave (Conv), linear (Lin), or constant (Cons).
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